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Preface

In the recent past, we have lost three very dear colleagues, Prof. Pravir Dutt,
Prof. Arbind Lal and Prof. Sudipta Dutta tragically. All three, apart from
being wonderful people, were also brilliant mathematicians. Each of them
has left a lasting impression on their students, colleagues and collaborators.
They have indeed inspired, motivated and trained their students so well, that
many of them are competent teachers and mathematicians today.

While, these losses still appear very unreal, we have decided to celebrate
their mathematical legacy, by organizing this symposium in their memory
and honor. We are especially thankful to Prof. Pradipta Bandhopadhyay,
Prof. Sukanta Pati and Prof. Akash Anand for preparing this booklet. They
have interacted with various collaborators of Prof. Dutt, Prof. Lal and Prof.
Dutta to make this booklet. We express our sincere gratitude to each of them
for all their efforts.

v



Chapter 1

A glimpse of Sudipta Dutta’s
work:
Contributions to geometry of Banach spaces

Abstract This is a survey of the contribution of Sudipta Dutta. Sudipta
and his coauthors have contributed to several aspects of Geometry of Banach
spaces, both to the structural and technical aspects. Some of these include,
aspects of Approximation theory, almost constrained (AC) subspaces, geom-
etry of the dual unit ball, understanding L1-predual spaces via representing
matrices, algebraic reflexivity of sets of operators on classical function spaces,
Gδ-embeddings and structure theory of Lp-spaces.

Professor Sudipta Dutta was born on August 29, 1976. He did his B. Stat.
(1997), M. Stat. (1999) and Ph. D. (2004) from Indian Statistical Institute
(ISI). Then he joined Ben Gurion University of the Negev, Israel, as a post-
doctoral fellow during 2004-06. During this period, he also visited University
of Paris VI. Returning briefly to ISI in 2006, he joined IIT Kanpur as Assis-
tant Professor in July, 2007, and became a Professor in 2016.

Two students got their Ph. D. degrees under his supervision. He was
supervising a third student at the time of his demise.

Sudipta’s research interests included Banach space theory, Operator spaces
and Abstract harmonic analysis. He was quite well-known in his area. In the
short span of less than 15 years, he published about 29 articles (4 of them
posthumous), all in premier journals. According to MathSciNet, his works
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CHAPTER 1. A GLIMPSE OF SUDIPTA DUTTA’S WORK 2

have been cited 137 times by 95 authors. He was awarded the Indo-U.S.
Science and Technology Fellowship in 2008-09, and the P K Kelkar Young
Research Fellowship of IIT Kanpur.

Starting from his pre-Ph. D. days till the very end, he had collaborated
with others on problems in somewhat disjoint areas, parallel to the works
that went into his or his students’ Ph. D. thesis. The list of his collaborators
are thus quite impressive. So is the breadth of the areas in which he has
contributed as can be seen from the AMS subject classifications of his papers.

We list his papers chronologically in the References, but rearrange them
thematically in this write-up.

Let us begin with the papers that went into his Ph. D. thesis, titled
“Intersection Properties of Balls in Banach Spaces and Related Topics”, or
at least had their origin in the thesis.

To fix our notations, for a Banach space X, B(X) = {x ∈ X : ∥x∥ ≤ 1}
and S(X) = {x ∈ X : ∥x∥ = 1}. For x ∈ S(X), D(x) = {f ∈ S(X∗) : f(x) =
1}, the duality map. And for f ∈ S(X∗), D−1(f) = {x ∈ S(X) : f(x) = 1},
the pre-duality map. Note that D−1(f) may be empty.

[4] Pradipta Bandyopadhyay, S. Dutta, Almost constrained subspaces of
Banach spaces, Proc. Amer. Math. Soc. 132 (2004), no. 1, 107–115.

[14] Pradipta Bandyopadhyay, S. Dutta, Almost constrained subspaces of
Banach spaces—II, Houston J. Math. 35 (2009), no. 3, 945–957.

A subspace Y of a Banach spaceX is almost constrained (AC) if any fam-
ily of closed balls centred at points of Y that intersects in X also intersects in
Y . The paper [4] discusses AC subspaces of Banach spaces, gives an exam-
ple to show that an AC-subspace need not, in general, be 1-complemented,
and obtains sufficient conditions for an AC-subspace to be 1-complemented.
This condition is in terms of functionals with “locally unique” Hahn-Banach
extensions.

The paper [14] continues this study. In this paper, the authors show that
a subspace H of finite codimension in CC(K) is an AC-subspace if and only
if H is 1-complemented. They also give a simple proof that the implication
“AC =⇒ 1-complemented” holds for any subspace of c0(Γ) and c. Only a
part of this paper went into Sudipta’s thesis.

[2] P. Bandyopadhyay, S. Basu, S. Dutta, B.-L. Lin, Very non-constrained
subspaces of Banach spaces, Extracta Math. 18 (2003), no. 2, 161–185.

It is well known that every dual Banach space X∗ is 1-complemented in
X∗∗∗. In sharp contrast, some Banach spaces are “nicely smooth”, i.e., given



3 CHAPTER 1. A GLIMPSE OF SUDIPTA DUTTA’S WORK

F,G ∈ X∗∗, there is a ball centred at a point of X which contains F but
not G. This paper investigates the more general situation of a “very non-
constrained” (V N) subspace Y of a Banach space X, and shows that most
results extend through similar techniques. A fundamental feature of this
paper is the algebraic nature of the treatment which considerably simplifies
the proofs. One of the main results states, inter alia, that Y is V N in X if
and only if no nonzero vector in X is Birkhoff-orthogonal to Y . It is shown
that a hyperplane is either a V N -subspace or an AC-subspace and in the
later case, it is constrained. Some stability results are also proved.

[1] Pradipta Bandyopadhyay, S. Dutta, Weighted Chebyshev centres and
intersection properties of balls in Banach spaces, Function spaces (Ed-
wardsville, IL, 2002), 43–58, Contemp. Math., 328, Amer. Math. Soc.,
Providence, RI, 2003.

This paper studies weighted Chebyshev centres and their relationship
with intersection properties of balls. Veselý [48] has studied Banach spaces
that admit weighted Chebyshev centres for finite sets. Subsequently, Bandy-
opadhyay and Rao [30] had shown, inter alia, that L1-preduals have this
property. Extending these results, this paper explores when a general family
of sets admit weighted Chebyshev centres, the typical examples being families
of finite, compact, bounded or arbitrary sets. A new feature of this treatment
is relating this question with the notion of minimal points. An interesting
result here is if X∗∗ is strictly convex and X admits weighted Chebyshev
centres for all compact sets, then for A ⊆ X compact, the set of minimal
points of A is weakly compact. This strengthens a result of Beauzamy and
Maurey [31] with a much simpler proof.

[6] Pradipta Bandyopadhyay, S. Dutta, Farthest points and the farthest
distance map, Bull. Austral. Math. Soc. 71 (2005), no. 3, 425–433.

Interesting results of this paper include the observation that ifX is strictly
convex, then every (weakly) compact convex set inX is the closed convex hull
of its farthest points if and only if every such set is the intersection of closed
balls containing it; and if X has the Radon-Nikodým Property (RNP), then
similar result holds for w*-compact convex sets in X∗. A notion of strongly
farthest points is introduced and strictly (resp., locally uniformly) convex
spaces are characterized as those for which every farthest point of a compact
(resp., closed bounded) convex set is a strongly farthest point. The authors
also obtain an expression for the subdifferential of the farthest distance map
in the spirit of Preiss’s theorem [45] showing that the subdifferential of the
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farthest distance map is the unique maximal-monotone extension of a densely
defined monotone operator involving the duality map and the farthest point
map.

[7] S. Dutta, Generalized subdifferential of the distance function, Proc.
Amer. Math. Soc. 133 (2005), no. 10, 2949–2955.

In this paper, the proximal normal formula is derived for almost proxim-
inal sets in a smooth and locally uniformly convex Banach space improving
upon earlier results of Borwein and Giles [32]. A necessary and sufficient
condition is obtained for the convexity of Chebyshev sets in a Banach space
X with both X and X∗ locally uniformly convex, weakening the reflexivity
assumptions in similar situations.

One of his earliest work outside his thesis was with Prof. T. S. S. R. K.
Rao of ISI, Bangalore.

[3] S. Dutta, T. S. S. R. K. Rao, On weak*-extreme points in Banach
spaces, J. Convex Anal. 10 (2003), no. 2, 531–539.

This paper is concerned with extreme points of B(X) that remain ex-
treme in B(X∗∗) under the canonical embedding. Such points are called
weak*-extreme. More generally, the authors study, among other things,
for a subspace M of a given Banach space X, conditions under which ex-
treme points of B(M) belong to (or fail to belong to) the same class of
extreme points in B(X). For instance, it is shown that, if M is an M -ideal
in X, then no weak*-extreme point of B(M) can be weak*-extreme in B(X).
Many specific examples are discussed: There is a strictly convex space X
such that every x ∈ S(X) remain extreme in B(X∗∗) but are no longer ex-
treme in B(X(4)). Furthermore, conditions are given which ensure that a
T ∈ S(K(X,Y )) weak*-extreme or strongly extreme in B(K(X,Y )).

The second section of the paper investigates the relationship between
weak*-extreme points and very smooth points. In particular, under addi-
tional assumptions, those extreme points of B(L(X,Y )∗) are described which
are points of weak*-weak continuity for the identity map. Finally, it is shown
that, if every equivalent norm in a Banach space X has a very smooth point,
then X∗ has the RNP.

[5] S. Dutta, T. S. S. R. K. Rao, Norm-to-weak upper semi-continuity of
the pre-duality map, J. Anal. 12 (2004), 115–124.

In this paper, the authors continued to explore the above kind of preserved
‘extremal’ behaviour by studying points of norm-weak upper semicontinuity
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of the pre-duality map D−1. They used an alternate descriptions due to
Godefroy and Indumathi [36] to show among other things, such points extend
from the dual of an M -ideal to the whole space and if it is in a weak*-closed
subspace, then it is a point of norm-weak usc w.r.t the quotient space.

[12] S. Dutta, T. S. S. R. K. Rao, Algebraic reflexivity of some subsets of the
isometry group, Linear Algebra Appl. 429 (2008), no. 7, 1522–1527.

In this paper, the authors investigate the algebraic reflexivity of sets of
operators. Let X be a complex Banach space. For A ⊆ L(X) the algebraic
closure of A is defined as follows:

Aa
= {T ∈ L(X) : ∀ x ∈ X, ∃ A ∈ A such that A(x) = T (x)}

We say that is A is algebraically reflexive if Aa
= A.

For a compact Hausdorff space K, the authors show that if the group
of isometries of C(K) is algebraically reflexive, then the set of involutary
isometries is again algebraically reflexive. In case of C(K,X), one addition-
ally needs X to be uniformly convex.

The authors also studied generalized bi-circular projections (GBP) (see
Definition [1.0.5] below) on the space A(K,X) of vector-valued affine con-
tinuous functions on a Choquet simplex K with X∗ strictly convex.

This paper is the second most cited paper by Sudipta with 13 citations.
One theme that appears repeatedly in Sudipta’s work is proximinality.

It began with two papers with D. Narayana and continued with four papers
with P. Shunmugaraj and others.

A closed set A ⊆ X is said to be proximinal if for every x ∈ X, PA(x) =:
{y ∈ A : ∥x − y∥ = d(x,A)} ̸= ∅. A proximinal set A is said to be strongly
proximinal if given ε > 0 there exists δ > 0 such that PA(x, δ) =: {y ∈ A :
∥x− y∥ < d(x,A) + δ} ⊆ PA(x) + εB(X).

G. Godefroy and V. Indumathi [35] introduced strong proximinality and
in a series of papers, have shown that certain geometric properties like
strong subdifferentiability (SSD) and QP-points are related to the existence
of strong proximinal subspaces of finite co-dimension.

[9] S. Dutta, D. Narayana, Strongly proximinal subspaces of finite codi-
mension in C(K), Colloq. Math. 109 (2007), no. 1, 119–128.

This paper continues the study of strongly proximinal subspaces. For
finite codimensional subspaces of C(K) spaces, it is shown that strong prox-
iminality is a transitive property. An important step in establishing this is
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to prove that the metric projection onto any such subspace is continuous in
the Hausdorff metric.

This paper is the most cited paper by Sudipta with 15 citations.

[10] S. Dutta, D. Narayana, Strongly proximinal subspaces in Banach spaces,
Function spaces, 143–152, Contemp. Math., 435, Amer. Math. Soc.,
Providence, RI, 2007.

In this paper, the authors show that a proximinal subspace Y of finite
co-dimension in L1(µ)-space is strongly proximinal if every hyperplane con-
taining it is strongly proximinal.

It is also noted that the notion of local U -proximinality studied earlier by
K. S. Lau [42] is equivalent to strong proximinality, thus answering a question
raised by Godefroy and Indumathi.

This paper is also one of the five most cited papers by Sudipta.

[15] S. Dutta, P. Shunmugaraj, Strong proximinality of closed convex sets,
J. Approx. Theory 163 (2011), no. 4, 547–553.

A sequence (xn) ⊆ M is said to be a minimizing sequence for x ∈ X if ∥x−
xn∥ → d(x,M). The set M is said to be approximatively (weakly) compact
if every minimizing sequence in M has a (weakly) convergent subsequence
which converges (weakly) to an element of M .

The main result of this paper is

[1.0.1]. The following statements are equivalent :
(a) The norm on X is strongly subdifferentiable at all points of S(X)
and D−1(f) is compact for every f ∈ S(X∗).

(b) X is reflexive and the relative weak and norm topologies coincide in
S(X).

(c) Every closed convex subset of X is approximatively compact.
(d) Every closed convex subset of X is strongly proximinal.

This paper is also one of the five most cited papers by Sudipta.

[17] S. Dutta, P. Shunmugaraj, Modulus of strong proximinality and con-
tinuity of metric projection, Set-Valued Var. Anal. 19 (2011), no. 2,
271–281.
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In this paper, a quantitative study of strong proximinality is initiated. If
M is a proximinal subspace of X, then the modulus of strong proximinality
ε : X \M × R+ → R+ is defined by

ε(x, t) = inf{r > 0 : PM(x, t) ⊆ PM(x) + rB(M)}.

It follows from the definition of the strong proximinality that a proximinal
subspace of X is strongly proximinal if and only if for each x ∈ X \ M ,
ε(x, t) → 0 as t → 0. The authors also obtain the following

[1.0.2]. Let M be a strongly proximinal subspace of X. Then PM is con-
tinuous at x ∈ X if and only if for every t > 0, ε(·, t) is continuous at
x.

Upper bounds of ε(·, ·) for proximinal subspaces of certain spaces such
as spaces with 11

2
-ball property, uniformly convex and C(K) with finite co-

dimension are also estimated.

[24] S. Dutta, P. Shunmugaraj, Vamsinadh Thota, Uniform strong proxim-
inality and continuity of metric projection, J. Convex Anal. 24 (2017),
no. 4, 1263–1279.

As mentioned before, it is noted in [10] that the notion of local U -
proximinality defined by K. S. Lau [42] is equivalent to strong proximinality.
In this paper, the authors consider the notion of U -proximinality considered
in [42] and relate it to “uniform strong proximinality”.

A proximinal subspace M of X is said to be uniformly strongly proximinal
(USP) on a subset A of X if for ε > 0, there exists δ > 0 such that PM(x, δ) ⊆
PM(x) + εB(X) for every x ∈ A.

One of the main result of [24] is:

[1.0.3]. Let M be a proximinal subspace of a Banach space X. Then the
following statements are equivalent.

(a) M is U-proximinal in X.
(b) Given ε > 0 there exists δ > 0 such that (1 + δ)B(X) ∩ [x +M ] ⊆
(B(X) ∩ [x+M ]) + εB(X) for all x ∈ B(X).

(c) Given ε > 0 there exists δ > 0 such that (1 + δ)B(X) ∩ [x +M ] ⊆
(B(X) ∩ [x+M ]) + εB(X) for all x ∈ {x ∈ S(X) : d(x,M) = 1}.

(d) M is uniformly strongly proximinal on {x ∈ S(X) : d(x,M) = 1}.
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As a consequence of Theorem [1.0.3], it is shown that U-proximinality
is a natural sufficient condition for the (uniform) continuity of the metric
projection. A characterization of uniformly convexity in terms of uniform
strong proximinality is also established.

[25] S. Dutta, P. Shunmugaraj, Weakly compactly LUR Banach spaces, J.
Math. Anal. Appl. 458 (2018), no. 2, 1203–1213.

This paper continues the study of relations between geometric properties
of X and proximinality properties of S(X).

A Banach space X is said to be weakly CLUR if whenever x, xn ∈ S(X)
and ∥xn + x∥ → 2, (xn) has a subsequence which converges weakly to an
element of A(x) = ∪{D−1(x∗) : x∗ ∈ D(x)}.

The following result is established in this paper.

[1.0.4]. Consider the following statements.

(1) X is weakly LUR.

(2) For every x ̸= 0, S(X) is approximatively weakly compact at x and
PS(X)(x) is a singleton.

(3) X is weakly CLUR and strictly convex.

(4) X is weakly CLUR.

(5) For every x ̸= 0, S(X) is approximatively weakly compact at x.

Then (1) ⇔ (2) ⇔ (3) ⇒ (4) ⇔ (5).

Several other geometric properties of weakly CLUR are also presented.

[8] S. Dutta, V. P. Fonf, On Tauberian and co-Tauberian operators, Ex-
tracta Math. 21 (2006), no. 1, 27–39.

A bounded linear operator T ∈ L(X,Y ) is called a Tauberian operator
if T ∗∗(x∗∗) ∈ Y implies that x∗∗ ∈ X. T is co-Tauberian if T ∗ is Tauberian.
This work relates the existence of nontrivial Tauberian or co-Tauberian oper-
ators with structural properties of the Banach spaces involved. For instance,
it is shown that a Banach space X contains an infinite-dimensional reflexive
subspace if and only if there exists a one-to-one Tauberian operator with
domain X which is not an isomorphism.
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[11] S. Dutta, Alexandre Godard, Banach spaces with property (M) and
their Szlenk indices, Mediterr. J. Math. 5 (2008), no. 2, 211–220.

In this paper, the authors considered the so-called property (M), which
roughly means that from the point of view of asymptotic smoothness, all
points of the sphere are equivalent. This property had been defined by Nigel
Kalton and Dirk Werner [40] and it is quite frequently satisfied. This pa-
per shows that Asplund spaces with Property (M) have a minimal Szlenk
index, and moreover that a norm with property (M) has optimal asymptotic
smoothness among all equivalent norms on given Banach space. Their results
apply in particular to Orlicz spaces.

[13] S. Dutta, V. P. Fonf, On tree characterizations of Gδ-embeddings and
some Banach spaces, Israel J. Math. 167 (2008), 27–48.

Let E,X be Banach spaces. A bounded linear one-to-one operator T :
E → X is called a Gδ-embedding if for every norm closed bounded and
separable subset D ⊆ E, T (D) is a Gδ-subset of X.

A tree in a Banach space E is defined as a family (xA) of elements of E
indexed by finite subsets of N. A sequence {xAn} is called a branch of the
tree if the cardinality of An is n and An is the initial segment of An+1. A
tree (xA) is called T -null if lim

n→∞
TxA∪{n} = 0 for all A ⊆ N.

One of the main results of the paper is: Let E,X be separable Banach
spaces and T : E → X be a one-to-one bounded linear operator. Then T is
a Gδ-embedding if and only if every T -null tree in S(E) has a branch which
is a boundedly complete basic sequence.

The paper also contains some results on the point of continuity property
and results showing that “tree-branch” assumptions in the results of this
paper cannot be replaced by “sequence-subsequence” assumptions.

[20] S. Dutta, V. P. Fonf, Boundaries for strong Schur spaces, Q. J. Math.
65 (2014), no. 3, 887–891.

Let X be a real Banach space. A subset B ⊆ S(X∗) is called a boundary
for X if, for every x ∈ X there is an f ∈ B such that f(x) = ∥x∥. It was
proved by the second author in [34] that if X does not contain an isomorphic
copy of c0, then for any representation B =

∪∞
n=1Bn of a boundary B for X

such that the sequence Bn is increasing, there exist an index m and an r > 0
such that Bm is r-norming for X. In this paper, the authors show that if
r > 0 can be chosen independently of a boundary B and its representation,
then that property characterizes strong Schur spaces.
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For δ > 0, a Banach space is said to be δ-strong Schur, if, given ε > 0
and a sequence (xn) such that ∥xn−xm∥ > ε, n ̸= m, (xn) has a subsequence
which is εδ-equivalent to the unit vector basis of ℓ1. We say that X is strong
Schur if it is δ-strong Schur for some δ > 0.

Let 0 < α < 1. We say that a Banach space X has the α-Schur property
if every normalized sequence in X has a weak*-limit point F ∈ X∗∗ with
∥F∥ ≥ α.

The authors prove that the following are equivalent:
(a) X is a strong Schur space.
(b) There exists r > 0 such that, for any boundary B of X and represen-

tation B =
∪∞

n=1Bn with Bn increasing, there is m ∈ N such that Bm

is r-norming for X.
(c) X is α-Schur for some α > 0.
Dr. Abdullah Bin Abu Baker was Sudipta’s first Ph. D. student.

[16] A. B. Abubaker, S. Dutta, Projections in the convex hull of three sur-
jective isometries on C(Ω), J. Math. Anal. Appl. 379 (2011), no. 2,
878–888.

Let I denote the identity operator on X, and T the unit circle in C. Here
the authors define the notion of generalized n-circular projections as follows:

Definition [1.0.5]. A projection P0 on a complex Banach space X is said
to be a generalized n-circular projection (GnP , in short), n ≥ 2, if there
exist λ1, λ2, . . . , λn−1 ∈ T \ {1}, λi of finite order, i = 1, 2, . . . , n − 1, and
non-trivial projections P1, P2, . . . , Pn−1 on X such that

1. λi ̸= λj for i ̸= j,

2. P0 ⊕ P1 ⊕ · · · ⊕ Pn−1 = I,

3. P0 + λ1P1 · · ·+ λn−1Pn−1 is a surjective linear isometry on X.
Every GnP is contractive, i.e., ∥P∥ = 1. The case n = 2 is known

as generalized bi-circular projections (GBP ). It is known that GBP s are
bicontractive, i.e., ∥P∥ = ∥I − P∥ = 1, and on certain functions spaces, it
was proved that any bicontractive projection is a GBP .

In this paper, the authors give a complete description of G3P on C(Ω)
where Ω is a compact connected Hausdorff space. The main result is:

[1.0.6]. Let Ω be a compact connected Hausdorff space, and let P be a pro-
jection on C(Ω) such that P = α1T1 + α2T2 + α3T3, where T1, T2, T3 are
surjective isometries on C(Ω), α1, α2, α3 > 0 and α1 + α2 + α3 = 1. Then
either
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1. αi =
1
2
for some i = 1, 2, 3, αj + αk = 1

2
, j, k ̸= i and Tj = Tk. In this

case P is a GBP ; or

2. α1 = α2 = α3 = 1
3
and T1, T2, T3 are distinct surjective isometries. In

this case P is a G3P .

This paper is also one of the five most cited papers by Sudipta.

[22] A. B. Abubaker, S. Dutta, Structures of generalized 3-circular projec-
tions for symmetric norms, Proc. Indian Acad. Sci. Math. Sci. 126
(2016), no. 2, 241–252.

In this paper, the authors characterize generalized 3-circular projections
on Cn equipped with a symmetric norm and on Mm×n(C), the space of all
m× n complex matrices, equipped with a unitarily invariant norm.

[18] S. Dutta, Bor-Luh Lin, Local U-convexity, J. Convex Anal. 18 (2011),
no. 3, 811–821. 46B20

A Banach space X is said to be a U -convex space [41] if for any ε > 0
there exists δ > 0 such that whenever x, y ∈ S(X) with 1

2
∥x + y∥ > 1 − δ,

we have f(y) > 1− ε for all f ∈ D(x).
In this paper the authors study U -convexity and its localization quanti-

tatively, through certain moduli. They define two possible localizations of
U -convexity, namely US(x, t) and UI(x, t) below.

Definition [1.0.7]. For x ∈ S(X), f ∈ S(X∗) and 0 < t < 2, let S(x, f, t) =
{y ∈ B(X) : f(y) > f(x)− t} and S(x, f, t)c = B(X) \ S(x, f, t). Define

U(x, f, t) = inf
y∈S(x,f,t)c

{1− 1

2
∥x+ y∥}

and define

US(x, t) = sup
f∈D(x)

U(x, f, t) UI(x, t) = inf
f∈D(x)

U(x, f, t)

US(t) = inf
x∈S(X)

US(x, t) UI(t) = inf
x∈S(X)

UI(x, t).

For U -convex spaces, US(t) = UI(t) > 0 for all t ∈ (0, 2). However,
US(x, t) ̸= UI(x, t) in general.

The authors show that if x ∈ S(X) is a Fréchet smooth point, then
UI(x, t) > 0 for all t ∈ (0, 2).
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Let x ∈ S(X) and f ∈ D(x). The authors show that f is a LUR point if
and only if x is a Fréchet smooth point and UI(f, t) > 0 for all t ∈ (0, 2).

They also define the moduli of denting point (d(x, t)) and strongly ex-
posed point (s(x, t)) and their uniform versions (d(t) and s(t)) and show
that
(a) x is a denting point if and only d(x, t) > 0 for all t ∈ (0, 2).
(b) x is a strongly exposed point if and only if s(x, t) > for all t ∈ (0, 2).
(c) If d(t) > 0 for all t ∈ (0, 2), then X is superreflexive.
(d) If s(t) > 0 for all t ∈ (0, 2), then X is uniformly convex.

[19] S. Dutta, P. Mohanty, U. B. Tewari, Multipliers which are not com-
pletely bounded, Illinois J. Math. 56 (2012), no. 2, 571–578.

Let G be a locally compact abelian group and 1 ≤ p < ∞. A bounded lin-
ear operator T : Lp(G) → Lp(G) is said to be a Lp(G) multiplier if commutes
with translations. Denote the space of all multipliers by Mp(G).

It follows from the work of G. Pisier [44] that Lp(G) can be equipped with
a natural operator space structure. If T ∈ Mp(G) is completely bounded in
the above operator space structure of Lp(G), we call this a cb-multiplier on
Lp(G). Denote the space of all cb-multipliers on Lp(G) by M cb

p (G). It is clear
that M cb

p (G) ⊆ Mp(G). One can show that M cb
p (G) = Mp(G) for p = 1, 2. It

is natural to ask: Is

M cb
p (G) ⊊ Mp(G) for 1 < p ̸= 2 < ∞? (1.1)

Pisier also established that for G compact abelian and 1 < p < 2, (1.1)
holds. In this paper, the authors show that (1.1) holds for R and outline a
proof for any group G infinite, locally compact and abelian. The main tool
is a transference result for completely bounded multipliers.

[21] S. Dutta, P. Mohanty, Completely bounded translation invariant oper-
ators on Lp, Bull. Sci. Math. 139 (2015), no. 4, 420–430.

In this paper the authors define a Banach space Acb
p (G), and they show

that, for abelian groups G, Acb
p (G) is an isometric pre-dual of M cb

p (G).
It is also proved that if G is a locally compact abelian group, 1 ≤ p, q < ∞

and
∣∣∣∣1p − 1

2

∣∣∣∣ < ∣∣∣∣1q − 1

2

∣∣∣∣, then
M cb

q (G) ⊊ M cb
p (G),

significantly improving on the result of [39].
Dr. Divya Khurana was Sudipta’s second Ph. D. student.
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[23] S. Dutta, Divya Khurana, Ordinal indices of small subspaces of Lp,
Mediterr. J. Math. 13 (2016), no. 3, 1117–1125.

This paper focuses on the widely investigated problem of classifying (up
to isomorphism) complemented subspaces of Lp spaces, 1 < p < ∞, p ̸= 2.
Some “simple” examples of such spaces are Lp and ℓ2, ℓp, ℓp ⊕ ℓ2 and ℓp(ℓ2).

In 1970, Rosenthal [46] constructed two other examples namely Xp and
Bp, which are not isomorphic to any of the above-mentioned five spaces, and
Alspach constructed a space Dp in the year 1974 (see [38]). In 1975, Schecht-
man [47] constructed countably many examples of complemented subspaces
of Lp spaces, 1 < p < ∞, p ̸= 2, by taking repeated tensor product of the
Rosenthal’s space Xp with itself.

All these examples of complemented subspaces of Lp spaces, 1 < p < ∞,
p ̸= 2, including the above mentioned class by Schechtman are subspaces of
ℓp(ℓ2). This leads to two natural questions. First, can one go beyond the
subspaces of ℓp(ℓ2) and second most importantly, are there uncountably many
mutually non-isomorphic complemented subspaces of Lp spaces, 1 < p < ∞,
p ̸= 2. The solution to both the questions finally came when J. Bourgain, H.
Rosenthal and G. Schechtman [33] showed that there are uncountably many
complemented subspaces of Lp, 1 < p < ∞, p ̸= 2, which are mutually non-
isomorphic. In order to do so, they introduced the so-called ordinal hp-index
of a separable Banach space.

hp-index is an isomorphic invariance for the class of separable Banach
spaces. In [33] only a lower bound for the hp-index of the constructed class
of complemented subspaces of Lp spaces, 1 < p < ∞, p ̸= 2, was given.
Natural questions which arise here are, is hp-index an complete isomorphic
invariance and can one compute hp-index for subspaces of Lp explicitly.

In this paper, the authors find the ordinal hp-index for Rosenthal’s space
Xp, ℓp and ℓ2, 2 < p < ∞. It is proved that for any infinite dimensional
subspace of Lp, 2 < p < ∞, possible values of hp-index are ω0, ω0 · 2 or
greater than equal to ω2

0. As an application to this result it is proved that
any infinite dimensional subspace of Lp, 2 < p < ∞, which is not isomorphic
to ℓ2 embeds in ℓp if and only if its ordinal index is the minimal possible.

Dr. Aryaman Sensarma was a Ph. D. student under Sudipta at the time
of his demise. Aryaman eventually completed his Ph. D. in 2019 under the
joint supervision of Prof. Pradipta Bandyopadhyay of ISI Kolkata and Prof.
Sameer Chavan of IIT Kanpur.

[27] S. Dutta, D. Khurana, A. Sensarma, Representing matrices, M-ideals
and Tensor products of L1-predual spaces, Extracta Math. 33 (2018),
no. 1, 33–50.
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A. J. Lazar and J. Lindenstrauss [43] showed that separable L1-preduals
can be represented by countable triangular matrices. In this paper, the
authors define a diagrammatic representation of separable L1-predual spaces
and study the question whether the M -ideals in such a space have a diagram-
matic representation based on the matrix representation of the space. Their
motivation comes from the fact that separable L1-preduals can be viewed as
an isometric version of approximately finite-dimensional real C∗-algebras and
that in such an algebra, the ideals are in a one-to-one correspondence with
the directed sub-diagram of its Bratelli diagram. The authors show that,
indeed, in complete analogy, in such spaces, every directed sub-diagram rep-
resents an M -ideal. The converse, namely, the question whether given an
M -ideal in a separable L1-predual space X, there exists a diagrammatic rep-
resentation of X such that the M -ideal is given by a directed sub-diagram,
remains open in general. We refer to this as “the main problem”. In this
paper, the authors partially answer the question by proving that this holds
for C([0, 1]) as well as for the spaces C(K) where K is a totally disconnected
compact metric space.

The authors also provide an algorithm for finding a representing matrix
for the injective tensor product of two separable L1-preduals having at hand
representing matrices of the two spaces.

[28] P. Bandyopadhyay, S. Dutta, A. Sensarma, Polyhedral preduals of ℓ1
and their representing matrices, J. Math. Anal. Appl. 468 (2018), no.
2, 1082–1089.

As we saw above, the isometric structures of separable real L1-predual
spaces are determined by their representing matrices.

In this paper, the authors are interested in the following question: Given
a representing matrix A of a separable L1-predual space X, is it possible to
identify some properties of A that will ensure X∗ = ℓ1?

Among separable L1-predual spaces, one property that distinguishes X
as an ℓ1-predual space is polyhedrality (that is, to be a Banach space such
that the unit ball of every finite-dimensional subspace is a polytope). The
notions of polyhedrality are classified in four “categories”.

The authors recall all notions mentioned above and analyze some relations
among them. In particular, they obtain characterizations of three of the four
“categories” of polyhedrality in a separable L1-predual space in terms of its
representing matrix.

The authors also show that in a polyhedral (IV ) predual of L1, their
“main problem” has an affirmative answer.
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[26] P. Bandyopadhyay, S. Dutta, A. Sensarma, Almost isometric ideals and
non-separable Gurariy spaces, J. Math. Anal. Appl. 462 (2018), no. 1,
279–284.

This paper is on non-separable Gurariy spaces and their almost isometric
ideals. The main result is that a (non-separable) Banach space is a Gurariy
space if and only if every separable almost isometric ideal (a.i.-ideal) in X
is isometric to the separable Gurariy space G. Further, it is shown that a
Banach space is an L1-predual if and only if every separable ideal in it is an
L1-predual. Along the way, they show that the family of ideals/a.i.-ideals in
a Banach space is closed under increasing limits. And hence, the family of
all separable ideals/a.i.-ideals in a Banach space is a skeleton.

[29] S. Dutta, C. R. Jayanarayanan, Divya Khurana, Ideal operators and
relative Godum sets, Extracta Math. 34 (2019), no. 1, 1–17.

Motivated by the principle of local reflexivity, G. Godefroy, N. J. Kalton
and P. D. Saphar [37] introduced the notion of an ideal in Banach spaces. In
this paper, the authors show that Y is an ideal in X if and only if there is an
operator T : X → Y ∗∗ such that ∥T∥ ≤ 1 and T |Y = IdY , providing another
point of view on ideals. Authors call such operator T an ideal operator.
Motivated by this characterization, the authors have studied the variants of
ideals, such as strict ideals, u-ideals, h-ideals or a.i.-ideals in terms of the
ideal operator. In particular, authors have characterized a.i.-ideals. Mainly,
uniqueness or injectivity of ideal operators seems to be crucial to reflect
properties of ideals and so they are widely discussed. Finally, there are
examples to illustrate how such a point of view may be applied.

Acknowledgements
I thank Sudipta’s coauthors for their inputs which made my job easier!
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Chapter 2

A survey of Pravir Dutt’s
research contributions

Pravir Dutt, born in 1958 and passed away in 2021, graduated from the Don
Bosco School in Kolkata in 1975 and earned an M.Sc. (Five Year Integrated)
degree from the Indian Institute of Technology (IIT), Kanpur, in 1980. He
earned a Ph.D. in 1985 from the University of California, Los Angeles, in the
United States. In 1987, Pravir joined IIT Kanpur as a faculty member in
the Department of Mathematics (now renamed as Department of Mathemat-
ics and Statistics) following a brief stay (1985–1987) at the NASA Langley
Research Center, Hampton, Virginia, USA. In 2001, he was elevated to the
position of Professor.

Pravir was an exceptional researcher known for his outstanding contri-
butions to fluid mechanics, parallel computing, spectral element methods,
and numerical solutions of partial differential equations (PDEs). Under his
guidance, more than a dozen Ph.D. candidates in various areas of Applied
Mathematics completed their theses.

Developing spectral element approaches for the numerical solution of
elliptic, parabolic, and hyperbolic problems is one of his many significant
achievements. In addition to offering theoretical frameworks and associated
stability and convergence analyses, his research into numerical methods also
involved practical implementations, frequently on parallel computing infras-
tructure.

In the sections that follow, we provide a summary of his contributions
to the numerical solution of partial differential equations and his research
accomplishments in fluid mechanics.

21
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2.1 Spectral methods for initial-boundary value
problems for hyperbolic systems of par-
tial differential equations

Pravir Dutt examined several facets of numerical solutions of initial-boundary
value problems for hyperbolic partial differential equation systems. Specifi-
cally, he developed and analyzed spectral approaches for solving such prob-
lems.

For instance, in [1], Dutt proved the stability of a regularized spectral
method for hyperbolic systems on a finite interval. The regularization occurs
at boundaries and amounts to a convolution of the outgoing waves with a
smoothing function. This procedure avoids any loss of smoothness upon
reflection.

In a related follow-up work [2], he proposed a new approach to spectral
methods for the numerical solution of initial-boundary value problems for
hyperbolic systems of partial differential equations. In this scheme, Cheby-
shev polynomials are chosen as a basis for an approximate solution. The
unknowns are determined to minimize a certain weighted average of the
residuals corresponding to the given partial differential equations and the
initial and boundary conditions.

He also contributed toward the numerical solution of the initial-boundary
value problems with non-smooth data. To begin with, in [3], he examined
hyperbolic initial value problems with periodic but not necessarily smooth
data. In this paper, authors showed that if they filter the data and solve the
problem using their Galerkin-Collocation method, they can recover point-
wise values with spectral accuracy, provided that the solution is piecewise
smooth. They relied on a local smoothing of the computed solution to achieve
this. They also proved error estimates in Sobolev norms of negative order
with respect to space and time. In his 1999 Numerische Mathematik pa-
per [4], he extended these ideas to solve the initial-boundary value problems
with non-smooth data. He showed that if we extend the time domain to
minus infinity, replace the initial condition by a growth condition at minus
infinity and then solve the problem using a filtered version of the data by the
Galerkin-Collocation method using Laguerre polynomials in time and Legen-
dre polynomials in space, then we can recover pointwise values with spectral
accuracy, provided that the actual solution is piecewise smooth. For this, he
again performed a local smoothing of the computed solution.
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2.2 Spectral element methods for elliptic prob-
lems

Another prominent direction of research contributions of Pravir Dutt is in
developing the spectral element method for elliptic problems.

The spectral element methods exhibit exponential convergence for smooth
problems and have been successfully used in practical situations. However, we
frequently need to numerically solve boundary value problems in non-smooth
domains in many engineering and scientific applications. It is well known that
the solutions of elliptic boundary value problems have singular behavior near
the corners and edges of the domain. Due to the presence of singularities,
conventional numerical methods fail to provide accurate numerical solutions,
and the rate of convergence of these methods degrades. In such cases, they
offer no advantages over low-order methods. It is desirable to find efficient
and robust methods along with standard numerical techniques to improve
the accuracy of the solutions and the efficiency of computations.

In this context, Dutt et al. proposed [5] a new parallel h-p spectral
element method that resolves the underlying singularities by employing a
geometric mesh in the neighborhood of the corners. This scheme gives ex-
ponential convergence with asymptotically faster results than conventional
methods. They also derived relevant stability estimates for this approach,
first in polygonal domains [6], and then for general elliptic problems on curvi-
linear domains [7]. A non-conformal version of this method was also proposed
by Dutt et al. in [8].

In a sequence of papers [9, 10, 11], Dutt et al. proposed and analyzed a
nonconforming h-p spectral element method for 3D elliptic boundary value
problems on non-smooth domains. The procedure uses auxiliary mappings
and geometrical mesh refinement to resolve the singularities at an exponen-
tial rate in anisotropic weighted Sobolev spaces with respect to the number of
layers in the mesh and polynomial order used in approximation. The method
is essentially a least-squares method, and the preconditioned conjugate gra-
dient method (PCGM) is used to solve the normal equations arising from
the least-squares formulation. The scheme is implemented on a parallel com-
puter with distributed memory where the library used for message passing is
MPI. The numerical results confirm the theoretical estimates.
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2.3 Spectral element methods for parabolic
problems

Pravir Dutt also contributed to the numerical solution of parabolic problems.
This work presents a spectral method for solving parabolic initial boundary
value problems on smooth domains using parallel computers. Dutt et al.
minimize, at each time step, a functional which is the sum of the squares of
the residuals in the partial differential equation, initial condition and bound-
ary condition in different Sobolev norms and a term which measures the
jump in the function and its derivatives across inter-element boundaries in
a certain Sobolev norm. The Sobolev spaces used are of different orders in
time and space. Error estimates are obtained for both the h and p versions
of this method.

In [13], a non-conforming least-squares spectral element method for parabolic
initial value problems with non-smooth data is introduced. The method con-
verges exponentially in space and time and minimizes residuals in the partial
differential equation and initial condition in different Sobolev norms. Con-
tinuity is enforced by adding a term to the function being minimized, which
measures the jump in the function and its derivatives across inter-element
boundaries in appropriate fractional Sobolev norms. The difficulty associ-
ated with the non-smooth initial data is resolved using the Hermite mollifier
described by E. Tadmor and by J. Tanner. Parallelization and precondition-
ing of the method are described, and rigorous error estimates are derived.
Several numerical examples are provided to demonstrate the accuracy and
efficiency of the method. One of the examples is the European Black- Scholes
Rainbow Put Options problem. Results for this problem with the proposed
method are found to be superior to the results obtained by W. Zhu and D.
A. Kopriva and by M. J. Ruijter and C. W. Oosterlee.

2.4 Fluid Mechanics
In [14], Pravir Dutt studied stable boundary conditions and difference schemes
for Navier-Stokes equations. More precisely, by employing the entropy func-
tion for the Euler equations as a measure of “energy” for the Navier-Stokes
equations, he obtained nonlinear “energy” estimates for the mixed initial
boundary value problem. These estimates are then used to derive boundary
conditions that guarantee L2 bounded solutions with weak boundary layers
even as the Reynolds number tends to infinity. In the same paper, he pro-
posed a new difference scheme for modeling the Navier-Stokes equations in
multidimensions. He obtained discrete energy estimates exactly analogous
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to those he derived for the differential equation.
Another notable contribution in this direction was published recently,

where he, along with his collaborators, proposed a non-conforming least-
squares spectral element method for Stokes equations [15]. More precisely,
this work presents a discontinuous least-squares spectral element method for
Stokes equations with primitive variable formulation on both smooth and
non-smooth domains. The proposed numerical scheme is based on stability
estimates and is exponentially accurate. The method was implemented on
different polygonal domains to demonstrate its efficacy in terms of accuracy.

More recently, he contributed to a study of granular flow on a rotating
and gravitating elliptical body [16]. This work investigates two-dimensional
shallow granular flows on a rotating and gravitating elliptical body. This
is motivated by regolith flow on small planetary bodies - also called minor
planets - which is influenced by the rotation of the body, as well as its irregular
topography and complex gravity field.
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Chapter 3

A small highlight of research
work of Professor Arbind K.
Lal

Abstract: This document is prepared with contributing write-ups from dif-
ferent coauthors of Professor Arbind Kumar Lal. It aims to highlight some
of his research works. Owing to Professor Lal’s ability to work in differ-
ent areas and the fact that we could not collect contributions from all of his
coauthors, this document is nowhere close to completely covering his entire
research carrier.

3.1 Professor Arbind Lal
Professor Arbind Lal’s coauthors and students will always remember him as
being an enthusiastic person who enjoyed engaging in mathematical discus-
sions with them. In addition to this, he was a very kind and helpful person.

He completed his PhD from Indian Statistical Institute, New Delhi, under
the supervision of Prof. R. B. Bapat in 1993. After brief stints at TIFR
Mumbai and HRI Allahabad, Arbind joined IIT Kanpur, as a faculty in
1996.

In this article we will discuss some of his mathematical contributions. His
work exhibits a great deal of diversity. This collection is only a small part of
his contributions, which is far from the complete picture.

According to his students, he was instrumental in changing their phi-
losophy of life. He also influenced their work culture in general and their
mathematics in particular.

Here, we have tried to keep mathematical discussions accessible in order

29
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to highlight the fundamental importance of his works.

3.2 Algebraic connectivity

Have you ever wondered which city is more connected out of two given cities?
We start to imagine some localities in cities and key to have an overall idea
of how effectively we can go from one place to another via their transport
system.

In a picture, let us represent the localities by dots (which we call vertices).
We join a pair of vertices by a line segment (which we call an edge) and allow
curves, if there is a direct transport available to travel between those two
places.

What we obtain here is called a graph. The edges here could be weighted
based on different factors like time taken for travel or modes available etc.
With this model in mind, one then asks, which graph is better connected?

Imagine for simplicity that all the edges have weight 1. Even in this
situation, the answer is not easy. One of the many ways to answer this
question is to use the algebraic connectivity.

For this one needs to label the vertices ase 1, 2, . . . , n. We use G to denote
a graph with V = {1, . . . , n} to be the vertices and E to be the edges (this
is a set of some unordered pairs of distinct vertices). Two vertices are called
adjacent, if there is an edge available between them.

Corresponding to the graph G, we can associate the adjacency matrix A
whose (i, j)-th entry

aij =

{
1 if i ∼ j (adjacent)
0 otherwise.

We also associate the Laplacian matrix L which is defined by L := D − A,
where D is the diagonal degree matrix. Here the degree of a vertex i is the
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number of edges incident on it.

1 2

5

3

6

4

G


0 1 0 0 0 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 1
0 0 0 0 1 0



A


1 −1 0 0 0 0

−1 3 −1 0 −1 0
0 −1 2 −1 0 0
0 0 −1 1 0 0
0 −1 0 0 2 −1
0 0 0 0 −1 1



L

Professor Mirslav Fiedler, in 1973, observed that the matrix L has many
special properties. For example, it is always a positive semidefinite matrix and
therefore it has all its eigenvalues being nonnegative. The smallest eigenvalue
is always 0.

He observed that if the graph is connected (travel between each pair of
vertices is possible), then the second smallest eigenvalue is always positive
and if we add more edges to the graph, this number only increases.

Hence, this number may be viewed as a quantity that measures the con-
nectivity of the graph and is called the algebraic connectivity of G.

Many natural results followed. For example, it was shown that the com-
plete graph Kn (where all possible edges exist between the vertices) has the
highest algebraic connectivity which is n. Further, among the connected
graphs, the path Pn on n vertices (here [1, 2], [2, 3], . . . , [n− 1, n] are the only
edges) has the smallest algebraic connectivity.

Many researchers contributed to the study. It was shown that an eigen-
vector corresponding to the algebraic connectivity identifies a somewhat cen-
tral part of the graph called the characteristic set.

For very special classes of graphs called trees (these are connected graphs
in which cycles cannot be found), it was also proved that if we try to move
the edges away from the characteristic set, the algebraic connectivity tends
to decrease.

We illustrate this in the following example. In figure 2.1, the tree T is
not completely shown. The characteristic set is assumed to be on the dotted
side to the left of u. The curved segment is not part of the tree. Observe
the part to the right of the curved segment. It is called a branch B at u.
Observe, how the edge X moves away one step from u and we obtain the
tree T ′ on the right. It is known that the algebraic connectivity decreases in
this process.



CHAPTER 3. HIGHLIGHT OF ARBIND LAL’S WORK 32

X
b b b b b

bB

u

T

X
b b b b b

bB′

u

T ′

Figure 3.1: The algebraic connectivity a(T ′) ≤ a(T ).

A more general result was always believed to be true but was never
proved. For example, consider the following graph G (figure 2.2). It may
be having more vertices on the left side. Here, we assume the characteristic
set is in the left side of 1. Consider the path P = [2, 3, 4, 5, 6, 7] and the
structure X which is inside the dotted curve. The graph H is now obtained
by moving X one unit away from 1 along the path P .

b b b b

b

b b

b

b b

b

b b

X

b b bb

b

b

b

1 2 3 4 5 6 7

G

b b b b b

b

b b

b

b

b

b b

X

b b bb

b

b

b

1 2 3 4 5 6 7

H

Figure 3.2: H is obtained from G by sliding C along P one unit away from
u = 1.

In such a situation one would ask whether a(H) ≤ a(G). Professor Lal
and his coauthors have shown that the result is indeed true.

Not much is known for graphs with more complicated structure. However,
the following notable comparison is a contribution of Professor Lal and his
coauthors. Consider a graph G with the structure given in the left side of
the following picture. Imagine rearranging the structures in the four sides to
get H. Can we say that a(H) ≤ a(G)?



33 CHAPTER 3. HIGHLIGHT OF ARBIND LAL’S WORK

HG

One can imagine rotating them about their centers and getting a feeling
as if the graph H will fall apart first. This sense is captured by their algebraic
connectivities. So the answer is yes. It has been shown by Professor Lal and
his coauthors that a(H) ≤ a(G).

For more information, please refer to ‘On algebraic connectivity of graphs
with at most two points of articulations in each block, Linear Multilinear
Algebra, 60(4), (2012), 415–432’ and the references therein.

Some material here discusses results from a recently finalized and sub-
mitted article by Professor Lal and his coauthors, titled ‘Some observations
on algebraic connectivity of graphs’.

3.3 Distance matrix

Consider a tree T . The distance matrix is the matrix D(T ) with its (i, j)-th
entry equal to the distance between the vertices i and j. For example, for
the tree in the following picture, the distance matrix is given below.
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1 2 4 5

3 6


0 1 2 2 3 3
1 0 1 1 2 2
2 1 0 2 3 3
2 1 2 0 1 1
3 2 3 1 0 2
3 2 3 1 2 0


A formula for the determinant of the distance matrix of a tree was sup-

plied by Graham and Pollack in 1971.

[3.3.1]. Theorem. Let T be a tree on vertices 1, 2, . . . , n. Then the determi-
nant of the distance matrix is detD(T ) = (−1)n−12n−2(n− 1).

This result tells us that the determinant of the distance matrix of a tree
depends only on the number of vertices and it does not depend on the struc-
ture of the tree. The formula for the inverse of the matrix D(T ) was obtained
in a subsequent paper by Graham and Lovasz.

There have been many generalizations of these result. One beautiful and
useful generalization was give by Professor Lal and his coauthors.

They considered something called the q-distance matrix D whose (i, j)-th
entry is defined as

Dij =

{
1 + q + q2 + · · ·+ qk−1 if the usual distance between i and j is k
0 if i = j.

Observe that, when we take q = 1, we obtain nothing but the usual distance
matrix. For example for the previous tree the q-distance matrix is

D =


0 1 1 + q 1 + q 1 + q + q2 1 + q + q2

1 0 1 1 1 + q 1 + q
1 + q 1 0 1 + q 1 + q + q2 1 + q + q2

1 + q 1 1 + q 0 1 1
1 + q + q2 1 + q 1 + q + q2 1 0 1 + q
1 + q + q2 1 + q 1 + q + q2 1 1 + q 0

.

The following is one of the many striking results proved by them.

[3.3.2]. Theorem. Let T be a tree on vertices 1, 2, . . . , n. Then the determi-
nant of the distance matrix is detD(T ) = (−1)n−1(1 + q)n−2(n− 1).
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The inverse of the q-distance matrix was also supplied. Many other vari-
ations like, weighted q-distance matrix, exponential distance matrix, were
also studied by them. Since then, many articles has been published taking
their study even further.

For more information, please refer to ‘A q-analogue of the distance matrix
of a tree, Linear Algebra and its Applications, 416 (2006) 799–814’ and the
references therein.

3.4 More works on the Laplacian matrix
Let G be a simple graph with vertex set V = {v1, v2, . . . , vn} and edge set
E. The adjacency matrix A(G) of G is defined as A(G) = [aij], where
aij = 1 if {vi, vj} is an edge of G and 0 otherwise. Let D(G) be the diagonal
matrix of vertex degrees of G. The Laplacian matrix of G is defined as
L(G) = D(G) − A(G). It is easy to see that L(G) is a symmetric positive
semidefinite matrix with 0 as an eigenvalue. Let the eigenvalues of L(G) be
0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G) repeated according to their multiplicity.
Then λ2(G) and λn(G) are known as algebraic connectivity and Laplacian
spectral radius of G and we denote them by µ(G) and λ(G), respectively. It is
also known that µ(G) = 0 if and only if G is connected and µ(G) = n−λ(G),
where G is the complement of G. We mainly worked on some extremal
problems associated with both µ(G) and λ(G).

We study the effect on the algebraic connectivity of a tree by the grafting
and collapsing of edges. As a corollary to these results, we prove that among
all trees on n vertices, the path has the smallest and star has the largest
algebraic connectivity.

Let Hn,k denote the set of all connected graphs on n vertices with k
pendant vertices. It is known that the complete graph Kn has the maximum
algebraic connectivity over Hn,0. For n ≥ 6, take a path on n − 4 vertices
and identify each pendant vertex with a vertex of K3. We denote it by Cn−6

3,3 .
We prove that for n ≥ 6, the graph Cn−6

3,3 uniquely attains the minimum
algebraic connectivity over Hn,0.

Let 1 ≤ k ≤ n− 1 and n ≥ 4. For k ̸= n− 2, the graph P k
n is obtained by

adding k pendant vertices adjacent to a single vertex of the complete graph
Kn−k and for k = n−2, the graph P n−2

n is obtained by adding n−3 pendant
vertices adjacent to a pendant vertex of the path P3. We prove that the
graph P k

n attains the maximum algebraic connectivity over Hn,k.
Let T (q, l, d) be the tree obtained by taking a path Pd with end vertices

v and w, and adding q pendant vertices adjacent to v and l pendant vertices
adjacent to w. Let Cn−3

3 be the graph obtained by identifying a vertex of K3
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with an end vertex of Pn−2. We prove that for k ≥ 2, the tree T (⌈k
2
⌉, ⌊k

2
⌋, n−

k) uniquely attains the minimum algebraic connectivity over Hn,k and Cn−3
3

uniquely attains the minimum algebraic connectivity over Hn,1. We also
prove that over all unicyclic graphs on n vertices, the algebraic connectivity
is uniquely minimized by the graph Cn−3

3 .
We have also worked on some problem related to Laplacian spectral radius

of trees. We prove that over all trees on n vertices with diameter d, the
maximum Laplacian spectral radius is achieved uniquely at Tn,d, where Tn,d

is obtained by taking a path P on d+1 vertices and adding n−d−1 pendant
vertices to a central vertex of P .

3.5 Partial differential equations
In the last three decades, a lot of work on the interaction between seemingly
distant fields of mathematics, i.e., graph theory and analysis, has been done.
This interaction has indeed contributed some interesting results in the the-
ory of mathematical physics, probability theory, ergodic theory, harmonic
analysis, partial differential equations etc. Some of the works concentrated
on the study of Partial Differential Equations (PDEs).

The combinatorial Laplacian operator on graphs may be viewed as a
discrete analogue of the classical Laplacian operator. Therefore, the combi-
natorial Laplacian operator and the problems related to the combinatorial
PDEs on graphs find importance in the study of “analysis on graphs”. The
techniques that have been used in the study of analysis on graphs come from
a very wide range of topics: algebra, combinatorics, PDEs, linear algebra,
spectral theory, analysis etc. We have dealt with a few problems related to
combinatorial PDEs on graphs.
Notations and Definitions: Let G = (V,E) be a locally finite graph.
For 1 ≤ p ≤ ∞, let us consider the normed linear space Lp(V ) = { f : V →
C : ∥f∥Lp(V ) < ∞}, where

∥f∥Lp(V ) =


(∑

x∈V

|f(x)|p
) 1

p

, if 1 ≤ p < ∞,

sup
x∈V

|f(x)|, if p = ∞.

Also, for a fixed function f : V → C, the combinatorial Laplacian operator
on G evaluated at f is defined as

∆Gf(x) =
∑
y∼x

(f(x)− f(y)) = m(x)f(x)−
∑
y∼x

f(y) for each x ∈ V,
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where m(x) denote the degree of the vertex x. Note that ∆G is bounded on
L2(V ) if and only if m(x) is uniformly bounded.

The combinatorial Schrödinger operator on a graph G has the form
Lq(G) = ∆G + q, where q (called the potential) is a real valued function
on the vertex set V of G. We restrict ourselves to nonnegative potentials,
i.e., q ≥ 0.

For any proper subset S of V, the boundary of S, denoted ∂S, is defined
as

∂S = {x ∈ V (G) \ S : ∃ y ∈ S such that x ∼ y}.

We denote the induced subgraphs on the vertex sets S and S = S ∪ ∂S
by X[S] and X[S] (in short, X and X), respectively. The vertex set S is
chosen so that |S| is finite and the induced subgraph X is connected. The
graph X has S as its interior and ∂S as its boundary. We are interested in
the Schrödinger eigenvalue problem with Dirichlet boundary condition with
respect to the finite vertex set S is equivalent to the study of Lq(X) = ∆X+q
with Dirichlet boundary condition. So, we are interested in the eigenvalue
problem {

∆Xf + qf = λ(q)f in S,
f = 0 on ∂S.

Before proceeding further, we need to define the difference operator on the
set of non-negative integers which is the discrete analogue of differentiation
with respect to the time variable.
Definition. Let Z+ = {0, 1, 2, . . .}. Then, for any complex valued function
v : Z+ → C, we define ∂nv(n) = v(n+ 1)− v(n).
Problems of Interest and Related Outputs: With the defi-
nitions and notations as above, we state the two problems in combinatorial
PDEs and the related outputs.

1. Finding the extrema of the eigenvalue problems related to combinato-
rial PDEs that are analogues of classical PDEs. To be precise, we are
interested in maximizing the smallest eigenvalue λ1(q) of the combina-
torial Schrödinger operator Lq(X) with Dirichlet boundary condition
whenever the non-negative potential q lies in the unit disc of Lp.
Output: For a nonnegative potential function q and a given graph
G, we study the combinatorial Schrödinger operator Lq(G) = ∆G + q
with Dirichlet boundary condition. Let S be a proper finite subset of
the vertex set of G such that the induced subgraph on S is connected
and let Υp = {q ∈ Lp(S) : q(x) ≥ 0,

∑
x∈S q

p(x) ≤ 1}, for 1 ≤
p < ∞. We prove the existence and uniqueness of the maximizer
of the smallest Dirichlet eigenvalue of Lq(G), whenever the potential
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function q ∈ Υp. Furthermore, we also establish the analogue of the
Euler-Lagrange equations on graphs.

2. Studying the solutions of the combinatorial heat and wave equations
on certain classes of graphs, viz., the Cayley and coset graphs (these
graphs are defined in later part of the synopsis). To be precise, given
a Cayley or a coset graph G, we want to solve the combinatorial heat
equation

∆Gu(x, n)+∂nu(x, n) = 0 on V (G)× Z+,

u(x, 0) = f(x),

and the combinatorial wave equation

∆Gu(x, n)+∂2
nu(x, n) = 0 on V (G)× Z+,

u(x, 0) = f(x), ∂nu(x, 0) = g(x).

Output: • Given any finite Cayley graph G, the solution to the com-
binatorial heat equation is of the form u(x, n) = Kn ∗ f(x) and the
solution to the combinatorial wave equation is of the form u(x, n) =
Fn ∗ f(x) + Gn ∗ g(x). It is interesting to note that these solutions
are in the form of a convolution and are similar to the solutions in the
classical case.
• Using the understanding built during the process of solving the heat
and wave equations for finite Cayley graphs, we are also able to solve
these equations on finite coset graphs. Thus, our technique helps us in
solving the combinatorial heat and wave equations on all finite vertex
transitive graphs. Further, using the theory of Fourier analysis on
locally compact abelian groups, we are also able to extend our results
to certain classes of infinite Cayley and coset graphs.
• We are also able to solve the combinatorial heat and wave equations
on k-regular trees, which can be identified with an infinite Cayley graph
G, where the associated group is a non-abelian free group with gener-
ators s1, s2, ..., sk, each of order 2.

3.6 Symmetry breaking in graphs
We distinguish or identify the pages of a book by its page numbers. Imagine a
book in which the pages are not numbered. Rather, some shapes are attached
to the corners of the pages so that the pages can still be identified by mere
touching and feeling of the shapes. If the number of shapes are equal to the
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number of pages and each page is assigned a different shape, then clearly
all the pages can be identified by touching and feeling the shapes. However,
this can be done with fewer number of shapes too. For example, if a book
contains only four pages, then only two shapes are enough to identify its
pages. See Figure 3.3(i), in which we use the labels a and b to denote two
distinct shapes. Observe that the corners of the four pages have been labeled
by the four distinct strings of labels aaab, aabb, abab and abbb. Hence all the
four pages can be distinguished. Similarly, if the number of pages of a book
is between 5 and 9, then this can be done with only three labels.

a

b

(i)

b

b
b

b

a

a

a

a

a

b

(ii)

c

d
b

a

c

d

d

d

Figure 3.3: The graph B4,4.

Note that due to several symmetries of a book, its pages cannot be iden-
tified without any page numbers, shapes or labels attached to the pages. For
example, all permutations of the pages as well as a flip about a line perpen-
dicular to the spine are symmetries of a book. One can notice that there
is no nontrivial label preserving symmetry for the book in Figure 3.3(i). In
general, if the corners of the pages of a book are labeled in such a way that
there remains no nontrivial label preserving symmetry of the book, then all
the pages of the book can be identified uniquely. Thus, given a book with n
pages, we wish to determine the minimum number of labels needed to label
the corners of the pages so that no nontrivial label preserving symmetry of
the book survives. That is, all the nontrivial symmetries of the book are
destroyed or broken by such a labeling. Normally, the pages of a book are
rectangular in shape. We generalize this idea and consider a book in which
the pages are polygonal in shape. For m ≥ 3 and n ≥ 1, we use the nota-
tion Bm,n to denote a book with m pages in which all the pages are regular
n-gons. Indeed, Bm,n is a simple connected graph. In general, we wish to
determine the minimum number r for a simple connected graph G such that
the vertices of G can be labeled with r labels and that no nontrivial label
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preserving symmetry, or rather automorphism, of the graph survives. We
denote this minimum number by D(G), and call it the distinguishing number
of G. The distinguishing number of Bm,n is determined by Professor Lal and
one of his coauthors, as given in the following formula:

D(Bm,n) =


3 if m ∈ {3, 4, 5}, n = 1
2 if m ≥ 6, n = 1
n if m = 3, n ≥ 2
k if (k − 1)m−2 + 1 ≤ n ≤ km−2, k ≥ 2, m ≥ 4, n ≥ 2.

The distinguishing number of a graph can be made more refined if we
assume the labeling to satisfy the condition that adjacent vertices receive
distinct labels. Such a distinguishing number of a graph G is called the
distinguishing chromatic number of G, and it is denoted by χD(G). For
example, χD(B4,4) = 4. In Figure 3.3(ii), a labeling of B4,4 is given with
four labels such that adjacent vertices receive distinct labels and no label
preserving nontrivial automorphism of B4,4 survives.

The distinguishing chromatic number of Bm,n is determined in a work of
Professor Lal and one of his coauthors, as given in the following formula:

χD(Bm,n) =


4 if m ∈ {4, 6}, n = 1
3 if m ∈ {3, 5} ∪ {7, 8, . . .}, n = 1
n+ 2 if m = 3, n ≥ 2
k if α(m, k − 1) + 1 ≤ n ≤ α(m, k), k ≥ 3, m ≥ 4, n ≥ 2,

where α(m, k) = 1
2
(k − 1)

m−4
2 [1 + (−1)m] + (k − 2)(k − 1)m−3.

Let n and k be positive integers such that 2 ≤ 2k < n. The generalized
Petersen graph, denoted Pn,k, is defined to have the vertex set

V (Pn,k) = {u0, . . . , un−1} ∪ {v0, . . . , vn−1}

and the edge set

E(Pn,k) = {uiui+1, vivi+k, uivi : i ∈ {0, 1, . . . , n− 1}},

where the subscripts are read modulo n. The graphs P4,1 and P5,2 are shown
in Figure 3.4.

The number D (Pn,k) was determined by other researchers as follows:

D (Pn,k) =

{
3 if (n, k) = (4, 1) or (n, k) = (5, 2)
2 otherwise.
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(i) P4,1

a b
cd

a d
cd

a

a

a

a
b

b

c

cd

d

(ii) P5,2

Figure 3.4: The graphs P4,1 and P5,2.

In Figure 3.4, a labeling of each of P4,1 and P5,2 are given with four labels
such that adjacent vertices receive distinct labels and no label preserving
nontrivial automorphism of the corresponding graphs survive. In a work by
Professor Lal and one of his coauthors, the number χD (Pn,k) was determined
as follows:

χD (Pn,k) =

{
4 if (n, k) = (4, 1) or (n, k) = (5, 2)
3 otherwise.

Interestingly, χD (Pn,k) = D (Pn,k)+ 1 for each n and k. However, this is not
the case in general. For example, D(P ) = 2 = χD(P ), where P is a path on
even number of vertices. Also, D(B4,4) = 2 whereas χD (B4,4) = 4.

Interested reader are referred to the article ‘Breaking the symmetries of
the book graph and the generalized Petersen graph, SIAM J. of Disc. Math.
23 (2009), 1200–1216’ and the references therein.

3.7 Diverse areas
Representation of Cyclotomic Fields and Their Subfields. This work

is on circulant and companion matrices.
Let K be a finite extension of a characteristic zero field F. We say that
the pair of n×n matrices (A,B) over F represents K if K ∼= F[A]/ < B >
where F[A] denotes the smallest subalgebra of Mn(F) containing A and
< B > is an ideal in F[A] generated by B. In particular, A is said to rep-
resent the field K if there exists an irreducible polynomial q(x) ∈ F[x]
which divides the minimal polynomial of A and K ∼= F[A]/ < q(A) >.
In this work, we identify the smallest circulant matrix representation
for any subfield of a cyclotomic field. Furthermore, if p is any prime and
K is a subfield of the p-th cyclotomic field, then we obtain a zero-one
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circulant matrix A of size p× p such that (A,J) represents K, where J
is the matrix with all entries 1. In case, the integer n has at most two
distinct prime factors, we find the smallest 0-1 companion matrix that
represents the n-th cyclotomic field. We also find bounds on the size
of such companion matrices when n has more than two prime factors.
More on this can be found at https://arxiv.org/abs/1106.1727 and its
references.

Nonsingular circulant graphs and digraphs. This work is related to poly-
nomials divisible by cyclcotomic polynomials.
We give necessary and sufficient conditions for a few classes of known
circulant graphs and/or digraphs to be singular. The above graph
classes are generalized to (r, s, t)-digraphs for nonnegative integers r, s
and t, and the digraph Ci,j,k,l

n , with certain restrictions. We also ob-
tain a necessary and sufficient condition for the digraphs Ci,j,k,l

n to be
singular. Some necessary conditions are given under which the (r, s, t)-
digraphs  are singular.
More on this can be found at https://arxiv.org/pdf/1106.0809.pdf and
its references.

Pattern polynomial graphs. This work is on adjacency algebra of a graph.
A graph X is said to be a pattern polynomial graph if its adjacency
algebra is a coherent algebra. In this study we will find a necessary
and sufficient condition for a graph to be a pattern polynomial graph.
 Some of the properties of the graphs which are polynomials in the
 pattern polynomial graph  have been studied. We also identify known
graph classes which are pattern polynomial graphs.
More on this can be found at https://arxiv.org/abs/1106.4745 and its
references.

3.8 Linear codes and error correction
The key motivation for studying codes over Z4, the ring of integers modulo
4 is that they can be used to obtain desirable types of good binary codes.
Such codes have been studied widely in connection with the construction of
lattices, sequences with low correlation and in a variety of other contexts by
many researchers.

Many good nonlinear binary codes of high minimum distances have a
simple description as a linear code over Z4. Being a linear code decoding
becomes simplified.
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A linear code C, of length n, over Z4 is a submodule of Zn
4 . The minimum

Hamming distance dH of C is given by

dH = min{wH(x− y) : x, yC, x ̸= y},

where wH(x) is the number of nonzero components in x. It is widely used
for error correction/detection capabilities.

Another distance which is not that widely used is the Lee distance. Lee
weight of an element a ∈ Z4, denoted wL(a) is the minimum of {a, 4 − a}.
Lee weight of a vector x ∈ Zn

4 is the sum of Lee weights of its components
and the minimum Lee distance of C is

dL = min{wL(x− y) : x, y ∈ C, x ̸= y}.

It was known that for any linear code C over Z4, dH , the minimum Ham-
mimg distance of C and dL, the minimum Lee distance of C satisfy dH ≥ ⌈dL

2
⌉.

The code C is said to be of type α(β) if dH = ⌈dL
2
⌉ (dH > ⌈dL

2
⌉).

Professor Lal and his coauthors, defined Simplex codes of type α and β,
namely, Sα

k and Sβ
k , respectively, over Z4. Some fundamental properties like

2-dimension, Hamming and Lee weight distributions, weight hierarchy etc.
were determined for these codes by them. They also showed that binary
images of Sα

k and Sβ
k by the Gray map give rise to some very interesting

binary codes.
More on this can be found from ‘On Z4-simplex codes and their gray

images, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes.
AAECC 1999. Lecture Notes in Computer Science, vol 1719.

In another work, Professor Lal and his coauthors studied the lower bounds
on the minimum number of code words of any binary code of length n such
that the Hamming spheres of radius R with center at code words cover the
Hamming space Fn

2 . They generalized Honkala’s idea to obtain further im-
provements only by using some simple observations of Zhang’s result. This
lead to nineteen improvements of the above mentioned lower bound.

More on this can be found from ‘On Lower Bounds For Covering Codes,
Designs, Codes and Cryptography, 15, 237–243 (1998)’.

3.9 Zeor sum two person semi-Markov games
Markov (stochastic) games were introduced by Shapley (1953). A Markov
game is a dynamic probabilistic game which proceeds over the infinite future
(time horizon), with the property that a transition is made at every time in-
stant. The transition may return the game to the state it previously occupied,
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but a transition occurs nevertheless. We want to turn our attention to a more
general class of dynamic games, where the transitions may be several of the
time-intervals, where this transition time can depend on the transition that
is made. The game remains no longer strictly Markovian. However, the re-
search of Professor Lal and one of his coauthors, makes it clear that it retains
enough of the Markovian properties to deserve the name of a ’semi-Markov’
game. They introduced and investigated the semi-Markov game and reveal
the additional flexibility that brought to the problem of modelling dynamic
probabilistic situations with conflict. The theory of semi-Markov games finds
applications in dynamic overlapping generations models, dynamic oligopoly
models, etc.

Apart from being a very fundamental piece of work that has motivated
many researchers to work on this newly introduced area, this article may
read for its poetic presentation and pure entertainment.

It is now a widely followed piece of work. More on this can be found in
J. Appl. Prob. 29, 56–72 (1992).

3.10 Inequalities among two rowed immanants
of the q-Laplacian of Trees and Odd height
peaks in generalized Dyck paths

Let T be a tree on n vertices and let LT
q be the q-analogue of its Laplacian.

For a partition λ ⊢ n, let the normalized immanant of LT
q indexed by λ be

denoted as Immλ(LT
q ). Schur showed that immanants of positive semidefinite

matrices are known to be nonnegative. When the matrix is the Laplacian
of a tree T , then, simpler (combinatorial) proofs are known. In this work,
Professor Lal and his coauthors consider the q-analogue LT

q of the Laplacian
L of a tree T . It is known that LT

q is positive semi-definite if and only if
q ∈ (−1, 1). The combinatorial proofs work even when q ̸∈ (−1, 1) and thus
extend the scope of Schurs Theorem.

A string of inequalities among Immλ(LT
q ) is known when λ varies over

hook partitions of n as the size of the first part of λ decreases. In this work,
they identified a similar sequence of inequalities when λ varies over two row
partitions of n as the size of the first part of λ decreases.

First, they established a very fundamental identity involving binomial
coefficients and irreducible character values of Sn indexed by two row parti-
tions.

When λ = n − k, k is a two-row partition of n, the dimension of the
irreducible representation ofSn is known to be related to the Catalan number
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and hence related to paths in the plane. Our proof can be interpreted using
the combinatorics of generalized Riordan paths.

The combinatorialization of normalized immanant computations gives an
expression for the normalized immanant as a sum of positive quantities where
each term is split into a product of two factors, one which depends on the
irreducible character (and is independent of the tree) and another which
depends only on the tree (and is independent of the character values). Our
main lemma is a term-by-term comparison of this expression as the partition
λ varies. Our main lemma also admits a nice probabilistic interpretation
involving peaks at odd heights in generalized Dyck paths or equivalently
involving special descents in Standard Young Tableaux with two rows.

Two more very interesting results followed. One is when one takes the
bivariate q, t-Laplacian matrix LT

q,t of the tree T and for a complex number
z ∈ C, set q = z and t = z. Thus, they get a string of inequalities about the
normalized two-row immanants of this asymmetric matrix.

Professor Lal and his coauthors obtained many important inequalities
between Immλ1(LT1

q ) and Immλ2(LT2
q ) when T1 and T2 are comparable trees

in the GTSn poset and when λ1 and λ2 are both two rowed partitions of n,
with λ1 having a larger first part than λ2.

More about this can be found at:
https://doi.org/10.1080/10236198.2022.2035727
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