	Indian Institute of Technology Kanpur Department of Mathematics and Statistics Written Test for Ph.D. admissions in Mathematics													
Maximum Marks : 90			Date : December 3, 2018							Time: 90 Minutes				
Name of the Candidate														
Roll Number							Category (Tick One)			GEN		OBC		SC/ST/PwD

INSTRUCTIONS

(1) There are three sections; the first section has TRUE/FALSE questions, the second section is fill in the blanks and the third section has multiple choice questions.

- In the first section, every correct answer will be awarded 2 marks and a wrong answer will be awarded NEGATIVE $1(-1)$ marks.
- In the second section, every correct answer will be awarded 2 marks and a wrong answer will be awarded 0 marks.
- The third section has one or two correct answers. In this section
- each question has four choices.
- if a wrong answer is selected in a question then that entire question will be awarded 0 marks.
- the candidate gets full credit of 4 marks, only if he/she selects all the correct answers and no wrong answers; 2 mark will be awarded for an answer to a question if it is partially correct and a wrong answer is not selected.
(2) These question-cum-answer-sheets must be returned to the invigilator before leaving the examination hall.
(3) Please enter your answers on this page in the space given below.

Notations

I. We denote by \mathbb{N}, \mathbb{R} and \mathbb{C}, the set of natural numbers, real numbers and complex numbers, respectively.

True/False

(1) Consider \mathbb{R} with the co-countable topology τ, which consists of the empty set and all subsets A such that $\mathbb{R} \backslash A$ is countable. Then (\mathbb{R}, τ) is Hausdorff.
(2) Let $T: H \rightarrow H$ be a bounded linear operator on a real Hilbert space H. Suppose $\langle T x, x\rangle=0$, for all $x \in H$. Then $T=0$.
(3) Consider the function space
$C^{\frac{1}{2}}([0,1]):=\left\{f:[0,1] \rightarrow \mathbb{R}: \exists K>0\right.$ such that $\left.|f(x)-f(y)| \leq K|x-y|^{\frac{1}{2}}, \forall x, y \in[0,1]\right\}$.
Then both $x \mapsto \ln (1+x)$ and $x \mapsto x^{2}$ are elements of $C^{\frac{1}{2}}([0,1])$.
(4) Consider the second order ordinary differential equation (ODE)

$$
2 x^{3} y^{\prime \prime}(x)+(\cos 2 x-1) y^{\prime}(x)+2 x y(x)=0 .
$$

The number of independent Frobenius series solution is exactly 1.
(5) Let $Y(x)$ be a bounded solution of the ordinary differential equation (ODE)

$$
\begin{aligned}
& \quad\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+6 y=0 . \\
& \text { If } Y(1)=2 \text {, then } \int_{-1}^{1} Y(x) d x=\int_{-1}^{1} x Y(x) d x
\end{aligned}
$$

(6) Every nontrivial solution of $y^{\prime \prime}(x)+\left(1+\sin ^{2} x+\cos ^{4} x\right) y(x)=0$ has only finite number of zeros.
(7) There exists a non abelian group of order 18.
(8) Let A be a 4×4 real matrix such that $A^{3}=I$. Then 1 necessarily is an eigen value of A.
(9) Let R be a ring such that $x^{2}=2 x$ for all $x \in R$. Then $4 x=0$ for all $x \in R$.

Fill in the blanks

(1) If C is the circle $\{z \in \mathbb{C}:|z+2|=3\}$ oriented anti-clockwise, then value of the integral

$$
\int_{C} \frac{d z}{z^{3}(z+4)}
$$

is \qquad .
(2) If

$$
a_{n}:=\left\{\begin{array}{l}
\frac{1}{3^{n}}, n \text { is odd, } \\
\frac{1}{5^{n}}, n \text { is even, }
\end{array}\right.
$$

then the radius of convergence of the power series $\sum_{n} a_{n} z^{n}$ is \qquad
(3) Consider the sequence of functions $\left\{f_{n}\right\}_{n=1}^{\infty}$ defined by

$$
f_{n}(x):=n^{2} x e^{-n^{2} x^{2}}-(n-1)^{2} x e^{-(n-1)^{2} x^{2}}, x \in[0,1]
$$

Then the value of the integral $\int_{0}^{1} \sum_{n=1}^{\infty} f_{n}(x) d x$ is \qquad .
(4) Let A be the set of all holomorphic functions f from $\mathbb{C} \backslash\{0\}$ onto the open unit disc $\{z \in \mathbb{C}$: $|z|<1\}$. Then the cardinality of the set A is \qquad
(5) Given that $e^{x} f(y)$ is an integrating factor of

$$
y^{\prime}+\sin y+x \cos y+x=0
$$

If $f(0)=1$, then $f(y)=$ \qquad
(6) If a continuous function $y(x)$ satisfies

$$
y(x)+\int_{0}^{x}(2+x-t) y(t) d t=1+2 x
$$

then $y(x)=$ \qquad .
(7) Let $f(x)$ be a continuous function which has exactly one zero in the interval $(2,6)$. The minimum number of iteration of the bisection method so that the zero of $f(x)$ can be determined with an accuracy of 2^{-20} is \qquad -
(8) For a function f, the following values and divided differences are given:

$$
f(3)=19, f[1,3]=9, f[0,1,3]=3
$$

Then $f(0)=$ \qquad
(9) Let G be a group of order 25 in which every element has order either 1 or 5 . Then the number of subgroups of order 5 in G is \qquad - .
(10) Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 1 & 2\end{array}\right]$. Then the product of all the eigen values of A is \qquad -
(11) Number of elements which are not invertible in the ring of integers $\{0,1,2, \ldots, 19\}$ modulo 20 is
\qquad -
(12) Number of 7-Sylow subgroups of S_{7} is \qquad .

Questions with one or two correct choices

(1) Let \mathbb{N}, the set of natural numbers, be endowed with the metric

$$
d(n, m):=\left|\frac{1}{n}-\frac{1}{m}\right|, n, m \in \mathbb{N}
$$

Then
a. All functions $f:(\mathbb{N}, d) \rightarrow(\mathbb{R},|\cdot|)$ are continuous, where $|\cdot|$ denotes the usual Euclidean metric on \mathbb{R}.
b. The space (\mathbb{N}, d) is complete.
c. The space (\mathbb{N}, d) is compact.
d. The space (\mathbb{N}, d) is connected.
(2) Let $\phi:\left(X, d_{1}\right) \rightarrow\left(Y, d_{2}\right)$ be a homeomorphism between two metric spaces. Then
a. $\phi(A)$ is bounded subset of Y, whenever A is a bounded subset of X.
b. $\phi\left(A^{\circ}\right)=(\phi(A))^{\circ}$, for $A \subseteq X$, where A° denotes the interior of A.
c. $\phi(\bar{A})=\overline{\phi(A)}$, for $A \subseteq X$, where \bar{A} denotes the closure of A.
d. $d_{1}(x, y)=d_{2}(\phi(x), \phi(y))$ for all $x, y \in X$.
(3) If $f:[0, \infty) \rightarrow[0, \infty)$ is uniformly continuous, then
a. f^{2} is uniformly continuous on $[0, \infty)$.
b. $f \circ f$ is uniformly continuous on $[0, \infty)$.
c. $F(x):=\int_{0}^{x} f(t) d t, x \in[0, \infty)$ is uniformly continuous on $[0, \infty)$.
d. f maps Cauchy sequences (of non negative real numbers) to Cauchy sequences.
(4) Let ℓ^{1} and ℓ^{2} be the spaces of real sequences defined as follows.

$$
\begin{aligned}
\ell^{1} & :=\left\{x=\left\{x_{n}\right\}: \sum_{n=1}^{\infty}\left|x_{n}\right|<\infty\right\}, \\
\ell^{2} & :=\left\{x=\left\{x_{n}\right\}: \sum_{n=1}^{\infty} x_{n}^{2}<\infty\right\} .
\end{aligned}
$$

Consider the metrics d_{1} and d_{2} on ℓ^{1} and ℓ^{2} respectively, as follows.

$$
d_{1}(x, y):=\sum_{n=1}^{\infty}\left|x_{n}-y_{n}\right|
$$

and

$$
d_{2}(x, y):=\left(\sum_{n=1}^{\infty}\left(x_{n}-y_{n}\right)^{2}\right)^{\frac{1}{2}}
$$

Then
a. Both ℓ^{1} and ℓ^{2} are separable.
b. ℓ^{1} is separable and ℓ^{2} is not separable.
c. Neither ℓ^{1} nor ℓ^{2} is separable.
d. ℓ^{1} is not separable and ℓ^{2} is separable.
(5) Consider the one dimensional wave equation

$$
\begin{gathered}
u_{t t}=u_{x x}, \quad 0<x<\infty, t>0, \\
u(0, t)=0, \quad t \geq 0 ; \quad u_{t}(x, 0)=0, \quad 0 \leq x<\infty, \\
u(x, 0)=\left\{\begin{array}{c}
\sin ^{2}\left(\frac{\pi x}{2}\right), \quad 2 \leq x \leq 4 \\
0, \quad 0 \leq x \leq 2, \quad x \geq 4 .
\end{array}\right.
\end{gathered}
$$

Then,
a. $u(4,1)=\frac{1}{2}$
b. $u(4,1)=1$
c. $u\left(\frac{9}{2}, 1\right)=\frac{1}{4}$
d. $u\left(\frac{9}{2}, 1\right)=\frac{1}{2}$
(6) Consider the ordinary differential equation (ODE)

$$
y^{\prime \prime \prime}+a y^{\prime \prime}+b y^{\prime}+c y=0, \quad x \in(-\infty, \infty)
$$

where a, b and c are arbitrary constants. Then, which of the following (is) are NOT solution of this ODE
a. $x \sin x$
b. x^{3}
c. $x^{2} e^{x}$
d. $x e^{x}$
(7) I is the approximate value of the integral $\Delta=\int_{-2}^{2}| | x+1|-|x-1|| d x$ obtained using Trapezoidal rule with four equispaced subintervals. Then
a. $I=\Delta$
b. $\Delta=6$
c. $I=0$
d. $I \neq \Delta$
(8) Let $f(t)$, for $t \geq 0$, be a continuous function and it is of exponential order in t. Let $F(s)$ be the Laplace transform of f and F satisfies $s^{2} F^{\prime \prime}(s)-6 F(s)=0$. If $f(2)=8$, then
a. $f(1)=4$
b. $f(1)=2$
c. $f(4)=16$
d. $f(4)=32$
(9) Let S_{7} denote the group of permutations of $\{1,2, \ldots, 7\}$. Let $\sigma \in S_{7}$ be an element such that it has highest order among all the elements of S_{7}. Then the order of σ is
a. 7
b. 10
c. 12
d. 15
(10) Which of the following has a solution (a, b, c) such that a, b, c are integers?
a. $5 x+8 y+17 z=5$
b. $171 x+102 y+87 z=9$
c. $42 x+84 y+105 z=6$
d. $21 x+42 y+3 z=1$
(11) Let R_{1} be the ring of continuous real valued functions on the interval $[0,1]$ and R_{2} be the ring of entire functions on \mathbb{C} (an entire function is a function from \mathbb{C} to \mathbb{C} which is analytic every where). Then
a. R_{1} is an integral domain and R_{2} is not an integral domain.
b. R_{2} is an integral domain and R_{1} is not an integral domain.
c. Both R_{1} and R_{2} are integral domains.
d. Neither R_{1} nor R_{2} is an integral domain.
(12) Let R be a finite integral domain and $f: R \longrightarrow R$ be a non-zero ring homomorphism. Then
a. f need not be a surjective map.
b. f need not be an injective map.
c. f is necessarily an isomorphism.
d. f, in general, is neither an injective map nor a surjective map.

