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Abstract. With the popularity of efficient multi-objective evolutionary
optimization (EMO) techniques and the need for such problem-solving
activities in practice, EMO methodologies and EMO research and ap-
plication have received a great deal of attention in the recent past. The
first decade of research in EMO area has been spent on developing effi-
cient algorithms for finding a well-converged and well-distributed set of
Pareto-optimal solutions, although EMO researchers were always aware
of the importance of procedures which would help choose one partic-
ular solution from the Pareto-optimal set for implementation. In this
paper, we address this long-standing issue and suggest an interactive
EMO procedure by collating most salient research in EMO and putting
together a step-by-step EMO and decision-making procedure. The idea is
implemented in a GUI-based, user-friendly software which allows a user
to supply the problem mathematically or by using user-defined macros
and enables the user to evaluate solutions directly or by calling an exe-
cutable software, such as popularly-used MATLAB software for a local
search or ANSYS software for finite element analysis, etc. Starting with
standard EMO applications, continuing to finding robust, partial, and
user-defined preferred frontiers through standard MCDM procedures,
the well-coordinated software allows the user to first have an idea of
the complete trade-off frontier, then systematically focus in preferred
regions, and finally choose a single solution for implementation.

1 Introduction

In the past decade of research and application activities of evolutionary multi-
criterion optimization (EMO), major focus has been made in finding a set of
trade-off solutions, representing the entire Pareto-optimal front. Although these
efforts were the first steps in evaluating the potential of EMO methodologies
as a true multi-objective optimizer, it is now time to address an equally im-
portant matter of choosing a single solution from the Pareto-optimal front for



implementation. Such a task should involve a decision-making activity in which
higher-level information must be provided by the decision-maker. It is obvious to
realize that such a decision-making activity is subjective and must depend on the
problem being solved. Thus, any effort in this direction must be spent on devis-
ing a procedure which will help a decision-maker (DM) to arrive at a solution of
his/her choice, rather than one which will recommend a solution automatically.
The multi-criterion decision-making (MCDM) approaches address a similar issue
and some MCDM ideas can be borrowed to address the decision-making issue in
an EMO study. Besides the higher-level decision-making approaches, there are
some other more direct decisions which most decision-makers may like to follow.
Some such decision-making ideas may include (i) preference of a robust frontier,
instead of a Pareto-optimal frontier, (ii) preference of locally-optimal solutions
obtained from EMO solutions, instead of simply choosing the EMO solutions,
preference of knee solutions and preference of some specific regions detected by
various means, instead of the entire trade-off Pareto-optimal frontier.

In this paper, we give shape to an earlier proposal by the authors [6] in
combining EMO procedures with a number of direct (less subjective) decision-
making tools and a number of higher-level (subjective) decision-making tools
with a procedure which can go back and forth between many such tools and
an EMO procedure. The main motivation behind such a repetitive procedure
is that often the choice of a higher-level decision-making tool or fixation of
parameter values associated with such a tool cannot be done a priori. When
an idea of the entire trade-off frontier is obtained, a decision-making tool with
all its associated parameters can be chosen adequately. The decision-making task
is subjective to the DM and the final outcome of such a task will be dependent on
the desires of the DM. To make the task of decision-making easier and possible,
we also develop a GUI-based software (currently developed for a linux operating
system) with visualization tools. Starting with a set of trade-off solutions, the
developed I-MODE software will allow a decision-maker to finally choose a single
preferred solution by performing a number of decision-making tasks. Currently,
the procedure can be used for any number of objectives, but the software is
restricted to a maximum of three objectives due to lack of suitable efficient
visualization procedures. The working of the procedure is demonstrated on a
welded-beam design problem having two objectives. The proposed methodology
is one of many possible implementations of hybrid EMO and decision-making
tools.

2 Existing Methodologies for Hybrid Multi-Objective
Optimization and Decision-Making

There exist different interactive multi-objective optimization methods in the
literature based on the classical optimization methods. Some popular method-
ologies, as described in [12] are as follows: Interactive Surrogate Worth Trade-off
(ISWT) method [2], Reference point method [15], NIMBUS approach [12] etc.
Each method is different from each other, but uses a single solution in each it-



eration. A guess solution is usually modified to another solution iteratively and
by gathering some information from a DM. Since a single solution is used in
an iteration, the DM only can find local information (such as a local trade-off
or search direction) and cannot make a decision using a more global picture of
the true Pareto-optimal front. However, in the context of an EMO, there do
not exist many interactive studies. Tan and his students developed a GUI-based
MOEA toolbox for multi-objective optimization [14]. The toolbox was designed
with some classical decision-making aides, such as goal and priority settings. But
a clear procedure of arriving at a single preferred solution was not present in the
toolbox. Fonseca and Fleming [11] devised a GUI-based procedure which allowed
some target values to be set for each objective and the trade-off objective infor-
mation of different solutions found using an EMO procedure was demonstrated.
However, the procedure lacked any quantitative statistical analysis of the solu-
tions and also clearly did not provide any indication of the location of chosen so-
lutions vis-a-vis the Pareto-optimal front. Another interactive GUI-based EMO
software was Guimoo, developed by INRIA, but it lacked any decision-making
facility.

3 Interactive Multi-objective Optimization and
Decision-making using Evolutionary Methods
(I-MODE)

In the proposed interactive EMO procedure, we attempt to put together some
recent salient research results of EMO (described below) along with salient
decision-making principles to constitute, for the first time, a hybrid interactive
multi-criterion decision-making procedure. The existing EMO procedures used
in I-MODE are as follows:

1. An EMO which is capable of finding the entire or a partial Pareto-optimal
set, as desired [3, 1].

2. An EMO which capable of finding a preferred region of interest on the Pareto-
optimal frontier using the reference point approach [10].

3. An EMO which is capable of finding a robust frontier [8], instead of Pareto-
optimal frontier.

4. An EMO with a local search procedure which provides a better convergence
properties [9, 5].

5. An EMO which is capable of handling multiple disconnected objective re-
gions and constitute a parallel search.

I-MODE also uses the following single-objective optimization procedures, mostly
for the purpose of verifying the multi-objective trade-off frontier obtained by an
EMO:

1. A procedure for finding individual optimal solution(s) corresponding to each
objective function subject to satisfaction of all supplied constraints [12].

2. The ε-constraint method of finding a single Pareto-optimal solution [12].



3. The multi-objective version of the ε-constraint method in which any num-
ber of original objectives can be kept as objectives and remaining original
objectives can be constrained to some ε values. This procedure is expected
to find a lower-dimensional Pareto-optimal front which would be a subset of
the high-dimensional Pareto-optimal front.

Finally, for the decision-making purpose, we have borrowed a number of MCDM
methodologies:

1. Tchebycheff methods with different “norms”,
2. Reference point method [15],
3. Utility function method including weighted-sum approach and pseudo-weight

method,
4. Surrogate worth trade-off method [12].

Using above procedures, we have designed an interactive procedure which allow a
systematic procedure of performing any of the above tasks alone, in combination
with each other or in sequence to each other in a manner which provides adequate
flexibility to a decision-maker. We present the procedure in the step-by-step
format. The parameters which are expected to be supplied by the decision-maker
(DM) are mentioned in parenthesis.

Step 1: Obtain an approximate non-dominated front with following options:
1.1 Compute the complete front (DM: no parameter)
1.2 Compute a partial front (DM: limiting trade-off values)
1.3 Compute Pareto-optimal solutions near the reference points only (DM:

reference point and limiting spread parameter)
1.4 Compute the robust Pareto-frontier (DM: robustness parameters)
Outcome: An approximate trade-off frontier

Step 2: Improve the obtained non-dominated front using other optimization
methods:
2.1 Single-objective local searches from selected solutions:

2.1.1 Automated selection: Clustering (DM: number of desired solutions)
2.1.2 User-defined selection: (i) Weighted-sum approach (DM: weight vec-

tors), (ii) Utility function based approach (DM: utility functions),
(iii) Tchebycheff function approach (DM: ideal points and Lp norm),
(iv) Using trade-off information between objectives (DM: Trade-off
values).

2.2 Obtain a better trade-off frontier with specific solutions obtained using
ε-constraint method (DM: ε values)

Outcome: A near-optimal and well-distributed trade-off frontier
Step 3: Verify obtained front with other optimization tasks:

3.1 ε-constraint method (single or multi-objective) (DM: ε-vector)
3.2 Optimization of individual objectives
Outcome: A verified (and confident) trade-off frontier

Step 4: Make decisions and choose regions of interest using one or more of the
following methods:



4.1 Weighted-sum approach (DM: weight vectors)
4.2 Utility function based approach (DM: utility functions)
4.3 Tchebycheff function approach (DM: ideal points and Lp norm)
4.4 Using trade-off information between objectives (DM: Trade-off values)
4.5 Checking robustness of solutions (DM: robustness parameters)
Outcome: One or more regions of interest identified

Step 5: Until satisfied, go to Step 1 and focus further study in the above regions
of interest, else declare the chosen solution(s)

3.1 Description of the I-MODE Procedure

The main difference between our proposed approach and the existing classical
interactive methods described in [12] is that in our approach, we first attempt to
find and show the DM the extent and shape of the Pareto-optimal front using a
few representative solutions. This procedure, in addition to providing estimated
ideal and nadir points of the problem, will also paint a good picture in the mind
of the DM about the shape of the Pareto-optimal frontier which will help the
DM later to concentrate on a particular region on the front. However, if the DM,
for some reason, is interested in focusing on a particular region on the frontier,
such information regarding his/her preference can be provided.

Thus, in the very first step of the I-MODE, in most situations, the DM applies
an EMO (NSGA-II, an efficient multi-objective optimizer [4], is used here) on the
problem to obtain a non-dominated front (Step 1). The EMO algorithm can start
with two types of initial population. If some problem information is available
then a biased population honoring the problem information can be generated,
otherwise a completely random set of solutions can be chosen. Without any
preference to any particular region on the trade-off frontier, the DM can find a
representative set of solutions on the entire Pareto-optimal frontier. If, however,
the DM is interested in a portion of the entire frontier, a number of options are
available. A useful procedure would be to suggest a surrogate worth trade-off
information (such as a 100% sacrifice in one objective must bring in at least a ζ%
gain in another objective and so on) and find a partial frontier using the guided-
domination based EMO [1]. Another useful way to find a biased set of trade-off
optimal solutions is to use a number of reference points (or aspiration points)
and use I-MODE to find optimal solutions close to these reference points [10].
This way, the DM gets to know Pareto-optimal solutions which are near his/her
chosen reference points and are not on the entire Pareto-optimal frontier. In
practice, solutions are only possible to be implemented with a finite precision. If
this uncertainty in decision variables cause the objective and constraint function
values to change by a large amount, the solution is declared as a non-robust
solution. As another alternative, right in the beginning, the DM can opt for
finding robust solutions which are less sensitive to parameter perturbations using
a robust EMO procedure [8]. To find a robust frontier (which would be, in
general, different from the original Pareto-optimal frontier), the user needs to
define a range of likely perturbation in decision variables or parameters and an
allowable change in functions (called as the robustness parameter) for defining a



robust solution. The DM chooses one of the two robust optimization procedures
described in [8] and can find the corresponding robust frontier.

Once the preliminary front is established through Step 1, the next step is to
improve the obtained frontier by means of other optimization concepts. This step
is necessary simply because evolutionary algorithms do not have a mathematical
convergence proof for any arbitrary problem and certain portion of the frontier
may not converge close to the true optimal frontier. One of the ways to have con-
fidence about the optimality of obtained solutions is to try various optimization
concepts and check to see if no further improvement on the obtained solutions
are possible by various optimization runs. We attempt to improve the solutions
using a local search procedure. For this task, a few solutions are picked from the
non-dominated set and an individual local search is initiated from each of these
solutions. For each solution, a combined single objective is constructed by com-
puting a normalized pseudo-weight vector based on the location of the solution
in the Pareto-optimal frontier [3, 7]. After several local searches are performed,
the new non-dominated frontier is constructed. The solutions chosen for a local
search can be randomly picked from the obtained set in Step 1 or some preferred
solutions picked using some decision-making tools. In some occasions, there may
exist wide gaps in the frontier obtained after the local searches and new single-
objective ε-constraint procedures can be initiated with ε vectors chosen inside
such gaps to find a number of representative solutions there. At the end of Step 2,
the DM expects to come up with a well-converged and well-distributed set of
trade-off solutions.

The next step (Step 3) is to verify the obtained frontier by a number of single-
objective optimizations. The extreme solutions of the non-dominated front can
be verified by using a single-objective genetic algorithm on each objective in-
dependently. The intermediate trade-off solutions can be verified by using the
ε-constraint method in which only j (∈ [1, M ]) objectives can be kept as objec-
tives and the remaining (M − j) objectives can be converted into constraints
[2]. If j = 1 is chosen, a single-objective optimization and if j > 1 is chosen,
a multi-objective optimization procedure can be used to find one or more opti-
mal solutions. These solutions should theoretically fall on the trade-off frontier
obtained by I-MODE.

After obtaining the non-dominated frontier in Step 1, improving it through
local searches in Step 2 and verifying the frontier through several other opti-
mizations in Step 3, the DM is confident enough on the near-optimality of the
obtained frontier and is ready to perform some decision-making tasks by getting
an idea of the range of trade-off objective values. In Step 4, the DM can use
a number of decision-making tools to concentrate one or more regions of pref-
erence by analyzing different regions of the trade-off frontier. For this purpose,
pseudo-weight selection, Tchebycheff metric method with different norms, refer-
ence point method, surrogate worth trade-off method, etc. can be used depending
on the appropriateness of the procedure to a particular problem. The DM can
simply decide to choose the robust solutions from the frontier. In the case of a
systematic evaluation of the frontier, multiple regions of interest can be selected
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Fig. 1. Structure of I-MODE software.

simultaneously for further investigation. A completely new multi-objective opti-
mization run with or without considering all the above-discussed steps (robust
optimization, local searches, decision-making etc.) can be repeated to find more
trade-off solutions in the chosen regions of interest and to help choose one or
more subregions for further investigation. This procedure can be continued till
the DM is satisfied (in Step 5) with a preferred solution.

3.2 I-MODE Software Implementation

Fig. 2. Window for coding objec-
tive functions.

Fig. 3. Plot window for two-
objective problem.

I-MODE procedure is extensively user-
dependent, where the DM has to inter-
act with the software frequently for an
effective run. To carry out such a rigor-
ous interactive activity, we need a soft-
ware with a powerful GUI, through which
the DM can specify his/her preferences. At
the time of development of the above fea-
tures, we kept the GUI simple but effec-
tive for the decision-maker. The whole soft-
ware is developed using C-language on the
Linux platform and GUI is developed using
GTK toolkit. This provides a robust struc-
ture of the code which can handle a large
optimization problem where the memory
requirement may be high. The I-MODE
software has three broad modules, namely
the pre-processor module, the optimization
module, and the decision-making module
(Figure 1).

In the pre-processor module, the DM
specifies the optimization problem by set-
ting the number of objectives, variables,



and constraints. The DM also codes the ob-
jective function in a GUI window (Figure 2) once for any subsequent operations
or can supply the program through a C-code or can be linked with an external
evaluation software, such as a finite element software, MATLAB or others. Dif-
ferent GA parameters are also specified in the preprocessor module. The next
module is the optimization module in which the DM can execute various op-
timization runs (Steps 1, 2 and 3 of the I-MODE procedure). Finally in the
decision-making module, the DM uses different decision-making tasks (Step 4)
to choose preferred solutions or regions. Figure 3 shows the online visualization
window where the DM can observe the real-time animation of the optimiza-
tion run. On this window, several Menu buttons are available, such as Point

Menu, Utility Menu, ε-constraint Menu, Ideal and Nadir point Menu, and
Select region Menu. The DM can choose one or more such menus and proceed
with the software.

4 Case Study: A Welded Beam Design Problem

In this problem, a beam is welded on another beam and carry a certain load.
This design problem with one objective is a particularly well-studied [13] one,
but here we modify the problem to include a second objective:

Minimize f1(x) = 1.10471h2` + 0.04811tb(14.0 + `),
Minimize f2(x) = δ(x) = 2.1952

t3b
,

Subject to g1(x) ≡ 13, 600− τ(x) ≥ 0, g2(x) ≡ 30, 000− σ(x) ≥ 0,

g3(x) ≡ b − h ≥ 0, g4(x) ≡ Pc(x) − 6, 000 ≥ 0,

0.125 ≤ h, b ≤ 5.0, 0.1 ≤ `, t ≤ 10.0.

(1)

The first objective is the cost of fabrication and second objective is the end
deflection, both of which are to be minimized. Four non-linear constraints are
related to limitations on normal stress σ(x), shear stress τ(x), buckling load
Pc(x) and a dimensional practicality. There are four design variables: thickness
of the beam b, width of the beam t, length of weld `, and weld thickness h,
each bounded between lower and upper bounds. The non-linear terms for stress
and buckling are given elsewhere [13]. The problem is coded in the pre-processor
phase of I-MODE and following systematic procedure is used to obtain a single
solution from a two-objective consideration.

4.1 Step 1: Find an Approximate Front

First, we find an idea of the Pareto-optimal front using I-MODE. We set follow-
ing parameter values: Population size=100; maximum generation=100; crossover
probability=0.9; mutation probability=0.1; distribution indices for SBX recom-
bination and polynomial mutation are 10 and 20, respectively. Figure 4 shows
the obtained front (solutions marked from A to B) using NSGA-II. To validate
the obtained front, we independently find the estimated ideal point by individ-
ual minimization of each objective and the estimated nadir point by using the
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Fig. 5. Updated extreme solutions of the
non-dominated front.

nadir point estimation procedure of I-MODE. Estimated ideal and nadir points
are joined to show the range of obtained trade-off optimal solutions. It is clear
from the figure that the non-dominated points obtained through NSGA-II do not
cover the entire range defined by the nadir and ideal objective vectors. Thus, we
can conclude that the NSGA-II procedure is unable to find the entire optimal
front and we need to improve this frontier.

4.2 Step 2: Improve the Trade-off Frontier
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Fig. 6. Updated Pareto-optimal front
of welded beam problem.

To obtain a better front, we use the lo-
cal search procedure on the end points.
For this purpose, we use the fmincon

optimization procedure of MATLAB
procedure, which is a classical SQP
method. We link MATLAB with the
I-MODE software through the local
search option: User defined. Figure 5
shows the solutions after the local
searches. The minimum-cost solution
A obtained through NSGA-II gets
largely improved to solution C, but the
minimum-deflection solution B gets im-
proved slightly. The updated ideal and
nadir points are found to be different from those obtained earlier, due to the
difficulty in obtaining the minimum-cost solution in this problem. Now from
these updated results, we observe that there is a gap between solutions A and
C. So we try to find the missing part of the Pareto-optimal front by using the
ε-constraint method by minimizing f1 and constraining f2 to several ε2 values.
The obtained solutions are then passed through a non-domination check with
the original NSGA-II solutions and the front is modified with new solutions.



Figure 6 shows the updated front consisting of previous NSGA-II run and ε-
constraint single-objective solutions.

4.3 Step 3: Verify Obtained Front

Since the new ε-constraint optimization runs find solutions which are well-
matched with the NSGA-II frontier, we skip the verification process at this first
iteration of the proposed I-MODE procedure.

4.4 Step 4: Make Decisions and Choose Regions of Interest

The above steps helped us get an idea of the range of Pareto-optimal solutions.
The next step is to find one or more regions of interest based on a higher-level
consideration. Here, we use two criteria. First we are interested in concentrating
in a region which is robust (less sensitive to the variable perturbation). We have
already seen in subsection 4.2 that minimum-cost region is sensitive to parameter
values and difficult to optimize. To perform the robustness study, we assume that
the beam dimensions t and b are expected to vary with ±2% from their chosen
values and weld dimensions h and l vary with ±4%. These values are kept this
way to take into account the fact that parameters t and b are obtained by a
machining operation and are expected to have a better control on dimensional
tolerance compared to the weld dimensions. We use the robustness of type II [8]
procedure and obtain the robust frontier with robustness parameter η = 0.01,
meaning that a maximum of 1% difference in average perturbation in objective
values from their original values due to uncertainty is allowed. Figure 7 shows the
robust frontier. It is interesting to note that minimum-cost solutions are sensitive.
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Since the minimum-cost solution corresponds to minimal use of materials, the
solution tends to make most constraints active. With an expected fluctuation in
design variables, such solutions can easily become infeasible and cannot qualify



to be robust. Thus, the robust consideration as a direct decision-making tool
enables us to keep away from choosing a solution close to the minimum-cost
solution. However, still in this problem we observe a wide variety of solutions
which qualify as robust solutions.

To reduce our focus further, we now use a subjective decision-making proce-
dure of surrogate worth trade-off. Of the robust solutions, we are interested in
solutions for which a 100% sacrifice in the cost value, at-least 150% improvement
in deflection occurs. That is, from a solution if we double the cost value, we are
interested in solutions which reduces the deflection 2.5 times. Simultaneously, we
would also like to ensure that a saving of at-least 25% cost for a 100% sacrifice
in deflection. To find such solutions from the remaining portion of the trade-off
frontier, we specify the following matrix and obtain a partial frontier by the
I-EMO software (Figure 8):

Tradeoff matrix =

[

1.0 1.5
0.25 1.0

]

(2)

It is interesting to note that only a small portion in the intermediate portion of
the robust frontier becomes the preferred region of solutions corresponding to
above trade-off information.

4.5 Step 5: Termination Criterion

This completes one iteration of the I-EMO procedure. Since we have not con-
verged to a single solution yet, we move to Step 1 for another round of I-EMO
but concentrate only in the trade-off region obtained at the end of Step 4.

4.6 Step 1: Find More Solutions in Preferred Region by NSGA-II

We run NSGA-II with the guided-domination concept and obtained more solu-
tions in the preferred region of interest. Figure 9 shows 100 solutions obtained
with a rerun of guided NSGA-II.

4.7 Step 2: Improve the Front

We ignore this step due to a robustness study planned in subsection 4.9.

4.8 Step 3: Verify Obtained Front

Here, we perform five ε-constraint single-objective minimizations of f2 by con-
straining f1 into different cost values in the current range [8.2, 13.0]. The ob-
tained solutions are shown in Figure 9 with circles, which suggests that the
NSGA-II front and these ε-constraint solutions more or less agree, thereby gain-
ing confidence on the obtained NSGA-II solutions.

We perform another verification process here. Since in the previous iteration
we expected certain trade-off (given in equation 2), we compute the pseudo-
weight vector of five widely-separated solutions (in diamonds). Table 1 shows the
objective function values and weight vectors for these selected points.
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Table 1. Pseudo-weight for selected solu-
tions.

Cost Max. deflection Pseudo-weight
Solution

f1 f2 w1 w2

A 8.262 0.002153 0.48 0.52
B 9.541 0.001838 0.47 0.53
C 11.087 0.001558 0.45 0.55
D 12.914 0.001321 0.42 0.58

Recall that for an identical pro-
portion of loss in either objective
a more stringent gain in deflec-
tion objective was set by the ma-
trix. From the above table, we
observe that the second objective
is given more importance than
the first objective in the selected
region. These calculations give us confidence in our approach and we now proceed
to make further decisions to choose a single preferred solution.

4.9 Step 4: Make Decisions and Choose Subregions of Interest

To choose a subregion of interest, we first investigate the robustness of the current
trade-off frontier using two different robustness parameter values of 0.01 and
0.001. Figure 10 shows that with a stricter requirement in fluctuation in function
values due to perturbations in design variables, the robust frontier gets worse.
To investigate how the solutions (design variables) change with a more strict
requirement on objective fluctuations, we plot two design variables (t and b)
versus the cost objective in Figure 11. Other two variables are found to have a
similar ‘almost constant’ behavior as that of t. The robust solutions are different
from the original solutions and it is interesting to note that the variable b of
robust and Pareto-optimal solutions follow a relationship with the cost objective:
the beam thickness variable must be increased linearly with large-cost solutions.
Interestingly, the change in beam thickness does not seem to depend much on
the chosen robustness parameter, but demand a significant change in t. These
informations are interesting and useful and are found as a by-product of I-MODE
procedure. Based on these plots, we decide to fix the robustness parameter to
η = 0.01 and proceed with the rest of the study.

To narrow down the preferred region, next we consider a subjective decision-
making tool with reference points. Say, we are interested in solutions towards two
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Fig. 11. Variable sensitivity of the welded beam problem.

extreme regions of the remaining trade-off front and specify following two refer-
ence (aspiration) points: (8.7, 0.00195)T and (12.0, 0.0014)T . To get a reasonable
spread of solutions, we choose (by trial-and-error here) a spread parameter of
ε = 0.001. Figure 12 shows the final solutions obtained by the reference NSGA-II
run on both reference points simultaneously. Reference points are also shown in
the figure.
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Table 2. Most preferred solution of
the welded-beam problem with supplied
decision-making aides.
Design Variables (in) Objective Values

h l t b Cost Deflection

0.917 1.009 9.856 1.672 12.838 0.00137

Finally, we decide to use another
subjective decision-making tool based
on the utility function approach. We
decide to use the following utility
function: Minimize U(f1, f2) = f1 ×

f2. Since cost and deflection are con-



flicting to each other, a product of the two objective values in the regions of
our interest may be thought as a combined utility measure, minimizing which
may result a solution having small values of both objectives. Figure 13 shows
the contour plot of the above utility function and reference point based NSGA-II
solutions. The utility function is tangential with the reference NSGA-II solutions
at point A, thereby meaning that the solution A is the most preferred solution
with respect to the chosen utility. The decision variables and objective function
values of this solution are shown in Table 2. It is important to note here that the
above task of finding the best solution based on a utility function is performed on
a chosen range of robust solutions and on solutions exhibiting certain trade-off

information and is not to be confused with finding the best solution for a fixed
utility function on the entire Pareto-optimal solution.

4.10 Step 5: Select the Most Preferred Solution

Since the outcome is a single solution, we terminate the I-MODE procedure
and declare solution A is the preferred outcome of the complete multi-objective
optimization and decision-making procedure.

Here, we have followed a sequence of steps with some subjective decision-
making tools to come up with a preferred solution, which is robust, near-optimal,
having desired trade-off in objectives, close to preferred aspiration points, and
possessing optimal desired utility. It is obvious that the outcome of the study
would change if any major change in the sequence of operation of steps is cho-
sen or a different decision-making tool or different parameter values are cho-
sen. There are certainly other procedures possible which will result in a differ-
ent solution. This is the unique feature of multi-objective optimization. But,
what we have demonstrated here is a systematic procedure of using such mixed
optimization-cum-decision-making strategies for arriving at a preferred solution.

5 Conclusions

In this paper, we, for the first time, have proposed an interactive optimization
and decision-making procedure for solving two and three-objective optimization
problems. In order to arrive at the procedure with a GUI-based software, we
have used salient research results from classical and evolutionary multi-objective
optimization literatures in a synergistic manner. The procedure not only finds
near Pareto-optimal fronts and then helps the DM to choose a particular solution,
the procedure provides options for doing checks and balances at various stages so
that the DM is more confident in arriving at a particular solution. Till now, no
such combined (classical and EMO) software is available for this task. With the
ground-breaking research and application studies using EMO so far, it is now
time for researchers to think and develop such interactive hybrid methodologies
which will give multi-objective optimization studies a real practical flavor which
they rightfully deserve.
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