A short term school on Micromanufacturing

Nov.05 – Nov.10, 2012

(Nanofinishing of silicon (8 nm) by CMMRF process and stainless steel tube (16 nm) by R-MRAFF process)

Registration form should contain the following information, It should be printed (not hand written) on A4 size paper.

Name: ____________________________
Position: ____________________________
Department: ____________________________
Institution/Organization: ____________________________
Address: ____________________________
E-mail Address: ____________________________ Mobile No.: ____________________________
Telephone No.: ____________________________ Fax No.: ____________________________

Educational Background (starting from B.E./B.Tech):

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field of Specialization</th>
<th>Institution</th>
<th>% marks/CGPA/CPI</th>
<th>Year</th>
<th>Rank in the class</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.E./B.Tech.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.E./M.Tech.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Areas of Research Interest: ____________________________

Have you attended any course on "Micromanufacturing" at IITK or elsewhere: Yes / No

(If yes, please give details__________________________)

Payment details
Demand draft no._______ dated__________
Amount in Rs._______ drawn at__________

Recomendation
Signature of applicant

*IMPORTANT DATES

- Receipt of applications: Oct. 12, 2012
- Information to the selected candidates: Oct. 19, 2012
- Receipt of the draft: Oct. 30, 2012
- Short term school duration: Nov. 05 to Nov. 10, 2012

ADDRESS FOR CORRESPONDENCE

Dr. V. K. Jain
Mechanical Engineering Department
Indian Institute of Technology Kanpur
Kanpur- 208016
E-mail: edtvkj@iitk.ac.in
Phone: 0512-259 7916(O), 259 8646(R)
Fax: 0512-259 7408

*Home page: http://home.iitk.ac.in/~vkjain/

Note: Correspondence will be done through e-mail, but application’s hard copy should be sent by post.
INTRODUCTION
An intensive course on MICROMANUFACTURING will be offered from Nov. 05 to Nov. 10, 2012, under the Continuing Education Programme of I.I.T. Kanpur. It is sponsored by Bhabha Atomic Research Centre, Mumbai. The course is designed to cater the needs of teachers, scientists from R & D houses and Labs., and practicing engineers from industries. This programme will be specifically useful for persons who are concerned with training / teaching, research, and industrial applications of micromanufacturing, micro- to nano-finishing, micromolding, microwelding, microcasting, nanometrology, etc.

OBJECTIVE
Nowadays, meso (1-10 mm) and micro (1-1000 μm) manufacturing are emerging as an important technology specially in the areas where miniaturization yields economic and technical benefits, namely, aerospace, automotive, optical, biomedical and similar other areas. The meso- and micro-manufacturing processes can be applied to metallic as well as non-metallic materials.

With the advent of numerical control (NC), computer numerical control (CNC) and direct numerical control (DNC), accuracy, uniformity and repeatability of the machined parts have improved and manufacturing has gained the flexibility. With time, the miniaturization of the machines and devices is leading to the demand of parts with dimensions of the order of a few micrometers (1 mm = 10^{-6} m) to a few hundred micrometers. Scientists and researchers are engaged in developing even the nano featured products such as NEMS (Nano Electro Mechanical System). It is quite safe to say that there is a need to have the manufacturing processes, which are capable of dealing with atomic and molecular dimensions. Hence, such processes come under the category of μ-manufacturing.

The demand of industries for μ-manufacturing of various types of materials (metallic, ceramics and plastics) is increasing day by day. Miniature parts have applications in various industries like electronics, medicine, communication, avionics and others. Some of the examples of the products that require μ-manufacturing are micro holes in fiber optics, micro nozzles for high temperature jets, micro molds etc. Conventional methods (turning, drilling, etc.) with modified versions have been employed for μ-manufacturing of various types of materials.

In case of advanced machining processes, material is removed at micro level either by mechanical means (USM, AJM, MAF), thermal erosion (EBM, LBM), anodic dissolution (ECM), chemical reaction or combination of two or more than two processes, called as hybrid machining. μ-machining can be placed in the group of precision machining and ultraprecision machining. μ-machining can be divided into two categories like bulk μ-machining where comparatively large amount of material is removed when compared with surface μ-machining where the objective is just to improve surface finish in the sub-micron range.

The Surface roughness values obtained by these processes have been reported as low as the size of an atom or even a fraction of the size of an atom. Now the natural question arises, how to measure such surface roughness or which equipment should be used to measure such low values of surface roughness? Atomic force microscope is the latest equipment used to measure such a low value of surface roughness.

The basic objective of the present course is to acquaint the participants with the principles, basic machine tools, developments in the μ–manufacturing process, and research trends in the area of μ–manufacturing process. Thus, this short term school will deal with various areas of micromanufacturing including measurement techniques.

COURSE CONTENTS
Introduction to MICROMANUFACTURING

- Traditional Micromachining
 Micromilling. Microturning, Microgrinding.

- Advance Micro / Nano– Machining
 Mechanical Micromachining (AJM, USM, etc.), Thermal Micromachining (EDM, LBM, EBM, etc.), Electrochemical and Chemical Micromachining, Ion Beam Machining, Photochemical Etching, Biomachining.

- Micro/Nano-finishing
 Abrasive Flow Finishing, Magnetic Abrasive Finishing, Magnetorheological finishing, etc.

- Microforming
 Micro-Sheet Forming, Micro-Laser Forming, etc.

- Microjoining Technology
 Laser Beam Microwelding/Microjoining, Electron Beam Microwelding/Microjoining, etc.

- Microfabrication
- Microcasting.
- Microsensors/Microactuators.
- Measuring techniques in μ-Manufacturing & Finishing.

FACULTY
Speakers shall be drawn from various disciplines of different IITs and other institutions of higher learning, and related industries and R&D organizations of different parts of the country.

COURSE FEE

FOR PARTICIPANTS FROM INDUSTRIES AND R & D LABS

Private and public sector industries, R & D Labs, teaching Institutions and other organizations are welcome to depute their executives, managers, teachers and engineers to participate in the course. The sponsoring organizations are required to pay a registration fee of Rs.10,000/- per participant (for teachers Rs. 2000/- per participant). The participants will have to make their own arrangements to meet their travel and other expenses. Boarding and lodging can be arranged in IITK guest house or IITK hostels based upon prior request and on the payment basis. Applications on a separate sheet giving the information shown in the Proforma should reach the Course Coordinator latest by Oct. 12, 2012.

MODE OF PAYMENT

The registration fee or refundable caution money deposit should be sent by bank draft payable at the “State Bank of India, IIT Kanpur” Branch and drawn in favour of “Micromanufacturing”.

The list of the selected candidates will also be displayed on the home page of the coordinator, as given below.

Home page: http://home.iitk.ac.in/~vkjain/