Integrated Ferroelectrics

Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/ginf20

Thermal Expansion Behavior of Biocompatible Hydroxyapatite-BaTiO$_3$ Composites for Bone Substitutes

S. Reddy a, A. K. Dubey b, B. Basu b, R. Guo a & A. S. Bhalla a

a Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX-78249, USA
b Laboratory for Biomaterials, Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur-208016, UP, India

Available online: 16 Dec 2011

To link to this article: http://dx.doi.org/10.1080/10584587.2011.616440

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
Thermal Expansion Behavior of Biocompatible Hydroxyapatite-BaTiO$_3$ Composites for Bone Substitutes

S. REDDY,1 A. K. DUBEY,2 B. BASU,2 R. GUO,1 AND A. S. BHALLA1,∗

1Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX-78249, USA
2Laboratory for Biomaterials, Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur-208016, UP, India

In the present study, the thermal expansion behavior of biocompatible pure Hydroxyapatite (HA) and HA-BaTiO$_3$ composites were studied in the temperature range of -150 to $300{^\circ}$C. The composites were optimally processed by conventional pressure-less sintering at $1250{^\circ}$C for 2 hrs. The measured coefficients of thermal expansion (CTE) values in the temperature range close to the human body temperature were ranging from 11×10^{-6}/°C to 12×10^{-6}/°C. It was observed that the CTE values are almost stable in the entire temperature range of measurement and closely resembled with the values for natural human bone.

Keywords Hydroxyapatite; BaTiO$_3$; Thermal expansion

1. Introduction

Hydroxyapatite [Ca$_{10}$ (PO$_4$)$_6$(OH)$_$_2], HA] being analogous to mineral component of bone, has been recognized as potential material for orthopedic implant applications [1, 2]. However, the poor mechanical and electrical properties of HA has necessitated to the development of HA-based composites with various reinforcements, like mullite [3, 4], CaTiO$_3$ [5], BaTiO$_3$ [6]. In view of significant electrical properties (piezoelectricity [7], pyroelectricity [8] etc.) possessed by bone, the potentiality of BaTiO$_3$ (BT) as an implant material has been proved in both, soft and hard tissues [9]. In the in vivo study involving implantation of BT in the femora of dogs for the time period of upto 20 weeks, the suitability of BT has been demonstrated by the absence of any inflammation or adverse effect at the implant (BT)-tissue interface [10]. In addition, the piezoelectric secondary phase in the composite has been shown to improve the fracture toughness [11, 12].

In order to integrate the biological, mechanical and electrical response, a composite of HA-BaTiO$_3$ (HA-BT) with varying amount of BT (0, 20, 40, 60, 80 wt%) in HA has been optimally processed using conventional sintering route.
The aim of the present study is to examine the thermal expansion behavior of the developed composites in the temperature range of -150 to $300^\circ C$ and to compare the results with the reported values of the thermal expansion coefficient for the natural bone.

2. Experimental

For the present work, HA is synthesized by suspension-precipitation route [13, 14] using CaO (M/s SD Fine-Chem Lit., Product No. 37614) and H$_3$PO$_4$ (M/s Merck, CAS No. 7664-38-2) as precursors. The H$_3$PO$_4$ solution (0.17M) was added drop wise in hot (80$^\circ$C) and stirred CaO solution. Following this, the pH of the solution was maintained at 10 using 25% NH$_4$OH solution (M/s Qualikems, Product No. A025112). The reaction product was precipitated and dried. The powders were calcined at 800$^\circ$C for 2 hrs and the phase verification was done using XRD. For the synthesis of BaTiO$_3$, stoichiometric amounts of BaCO$_3$ (Himedia, RM 1340) and TiO$_2$ (Himedia, RM 3065) were ball milled for 6 hrs using agate jar and balls as grinding media and acetone as a milling medium. The ball milled powders were calcined at 1000$^\circ$C in air for 6 hrs in a platinum crucible. For the preparation of composites, HA-x wt.% BT ($x = 0, 20, 40, 60, 80$) were ball milled for 16 hrs to ensure the homogeneous mixing with reduced particle size. These composites will be abbreviated as HA, HA-20BT, HA-40BT, HA-60BT, and HA-80BT, respectively. The powder compacts were consolidated at temperature of 1200$^\circ$C for 2 hrs in air atmosphere. In order to avoid decomposition of HA, sintering temperature was kept low. The synthesized samples were cut into the rectangular strips (~ 1.5 mm \times 5 mm) using a cutting saw. The samples were placed between the specimen push rod. The thermal expansion measurement of the samples were performed in the temperature range of -150 to 300°C, while heating and cooling at a constant rate (3°C/min), using dual push rod dilatometer [Theta Industries; Dilatronic VIII].

3. Results and Discussion

The coefficients of thermal expansion (CTE) measured in the temperature range of -150 to 300°C for all the developed dense composites ($\rho_{th} \sim 95\%$) are shown in Fig. 1. Figure 2 represents the variation in instantaneous coefficient of thermal expansion (CTE) with temperature. As these composites have been developed for orthopedic implant applications, the thermal expansion behavior of both the constituents of composite under in vivo environment (37$^\circ$C) is the matter of significant concern. The calculated CTE values for pure HA, HA-20BT, HA-40BT, HA-60BT, HA-80BT in the temperature range of 0 to 50$^\circ$C are $12.52 \times 10^{-6}/^\circ C$, $10.95 \times 10^{-6}/^\circ C$, $11.9 \times 10^{-6}/^\circ C$, $12.06 \times 10^{-6}/^\circ C$, and $10.96 \times 10^{-6}/^\circ C$, respectively. Table 1 summarizes the values of CTE in different temperature range of measurements. From these results, it is clear that the dispersion in CTE values for the developed composites in the temperature range close to the human body temperature is almost negligible. Apart from the biocompatibility and significant electrical activity, the stability in CTE values over a wide range of temperature further confirms the suitability of HA-BaTiO$_3$ composites as a potential orthopedic implant material.

Pal and Saha [15] reported the CTE value for the human tibia bone measured in the temperature range of $-20^\circ C$ to $20^\circ C$ was $23 \times 10^{-6}/^\circ C$ to $32 \times 10^{-6}/^\circ C$. The value of CTE for pure HA obtained in this study is in well agreement with the values reported in literatures [16–20]. The CTE values for pure BT have been reported in the range of $6 \times 10^{-6}/^\circ C$ to $12 \times 10^{-6}/^\circ C$ [21, 22].
An important aspect associated with the thermal expansion behavior of HA-BT composites is the ferroelectric phase transitions in BT. For example, the cubic to tetragonal phase transition in the present case seems to vary around 90°C–140°C (Table 1) depending upon the BT content in HA matrix and mode of thermal operation (heating or cooling). From the Table 1, it can be inferred that lower is the BT content (~12 vol.%), more is the...
Table 1
Coefficients of thermal expansion measured in different temperature ranges and corresponding phase transitions for the developed composites

<table>
<thead>
<tr>
<th>Material</th>
<th>Temperature (°C)</th>
<th>Heating CTE x(10^-6/°C)</th>
<th>Cooling CTE x(10^-6/°C)</th>
<th>Transition Temperatures (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Heating Run</td>
<td>Cooling Run</td>
<td>Heating Run</td>
</tr>
<tr>
<td>HA</td>
<td>100 to 280</td>
<td>13.59</td>
<td>14.20</td>
<td>No phase transitions</td>
</tr>
<tr>
<td></td>
<td>0 to 50</td>
<td>12.52</td>
<td>13.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-150) to (-50)</td>
<td>7.94</td>
<td>8.88</td>
<td></td>
</tr>
<tr>
<td>HA-20BT (HA-12 vol.% BT)</td>
<td>100 to 280</td>
<td>12.36</td>
<td>13.25</td>
<td>(-100), (-22),106</td>
</tr>
<tr>
<td></td>
<td>0 to 50</td>
<td>10.95</td>
<td>11.85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-150) to (-50)</td>
<td>8.84</td>
<td>9.64</td>
<td></td>
</tr>
<tr>
<td>HA-40BT (HA-26 vol.% BT)</td>
<td>100 to 280</td>
<td>12.81</td>
<td>13.24</td>
<td>(-130), (-27),113</td>
</tr>
<tr>
<td></td>
<td>0 to 50</td>
<td>11.9</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-150) to (-50)</td>
<td>8.75</td>
<td>9.65</td>
<td></td>
</tr>
<tr>
<td>HA-60BT (HA-44 vol.% BT)</td>
<td>300 to 100</td>
<td>13.21</td>
<td>13.43</td>
<td>(-128), (-24),129</td>
</tr>
<tr>
<td></td>
<td>0 to 50</td>
<td>12.06</td>
<td>12.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-150) to 100</td>
<td>11.87</td>
<td>10.72</td>
<td></td>
</tr>
<tr>
<td>HA-80BT (HA-68 vol.% BT)</td>
<td>300 to 100</td>
<td>11.87</td>
<td>12.13</td>
<td>(-115), (-35),147</td>
</tr>
<tr>
<td></td>
<td>0 to 50</td>
<td>10.96</td>
<td>10.47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-150) to (-50)</td>
<td>7.63</td>
<td>7.81</td>
<td></td>
</tr>
</tbody>
</table>

matrix constraint towards the phase transformation of BT which might resulting the phase transition of BT at relatively higher temperatures. For higher BT content (≥26 vol.%), the transition temperature is close to that of pure BT.

4. Conclusions
The experimental results confirm stable linear thermal expansion behavior of both HA and HA-BaTiO₃ composites. Pressureless sintered HA and HA-BaTiO₃ composites exhibited almost stable values of thermal expansion coefficients (≈10^-6/°C) in the entire temperature range of measurement. The phase transition in BaTiO₃ seems to be affected by the structural constraints imposed by HA in the developed composite. The measured
values of coefficients of thermal expansion for these composites are similar to the human cortical bone.

Acknowledgments

Authors AKD and BB would like to thank Indo-US Joint Center on Biomaterials for Health Care, Dept. of Science and Technology, India and AB is thankful to National Science Foundation (grant/0844081), USA for financial support.

References