Appendix A: Biclustering Algorithms, Validation
Indices, and Results

LIST OF SYMBOLS

rjx  Membership indicator variable of j* column of k" bicluster
| I | Number of genes

| J| Number of conditions

Fudge factor

Membership indicator variable of i*" row of k' bicluster
Data matrix

i*" Bicluster

Condition vector

Gene vector

Diagonal matrix

Unitary Matrix

Prototype column vector

Unitary Matrix

Vector of factors

Background layer of element at i"* row of j** column of k' bicluster
Significant score of D sub matrix

Additive noise

ary  Mean of all elements

arj  Mean of the j™ gene

ai;;  Mean of the i’ gene

a;;  Expression level of instance i under attribute j
Number of biclusters

Set of vertices indicating columns of matrix
Set of edges of graph

(.) Indicator function

Bipartite graph

Hausdroff distance

Subset of rows/genes

Row sets of the r*" sub matrix

Subset of columns/conditions

Row sets of the r*" sub matrix

Jaccard index function

Level of r'* sub matrix

Number of columns

Optimal set of vertices
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Number of rows in sub matrix
Corruption Probability

Measure for B-type co-expression
Number of columns in sub matrix

Set of vertices indicating rows of matrix
Measure for T-type co-expression
Threshold coefficients for conditions

te  Threshold coefficients for genes

W (p,q) Upper bound on model of size p x ¢
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1 BIDEAL: READY FOR USE BICLUSTERING ALGORITHMS

Herein, a brief overview of biclustering algorithms embedded in BIDEAL Toolbox is provided.
The objectives of biclustering algorithms may vary from one to another. On the basis of different
approaches, it can be categorized as [1]:

(i) Iterative row and column clustering combination
(i) Divide and conquer
(iii) Greedy iterative search
(iv) Exhaustive bicluster enumeration
(v) Distribution parameter identification

The brief overview of biclustering algorithms and validation indices embedded in BIDEAL
toolbox are discussed in further sections.

1.1 Cheng and Church (CC): In[2], Cheng and Church proposed a biclustering algorithm
to process expression data. Mean Squared Residue (MSR) score is used to extract d-biclusters from
the input data matrix. Coherency of the matrix can be measured by this MSR score as

MSR: —J Z (aij —aij—ajj—l—a”)z (1)

where I and J are the subsets of rows and columns respectively in given data matrix, |/| and |J|
are the total number of rows and the total number of columns. a;; is the element of Bicluster, a;;
is the mean of j** column, a,; is the mean of i*" rows and a;; is the mean of all the elements in a
Bicluster.

In ideal case, the values of MSR is 0 which indicates Bicluster is having constant value. Higher
value of MSR indicates lesser coherency. In this algorithm two main steps are performed: i) Node
deletion and ii) Node addition. In node deletion algorithm initially full data matrix is considered
then repeatedly rows or columns form the matrix is removed unless average residue score of
submatrix reaches to MSR < ¢. Removal of row or column is done on the basis of average residue
score of rows and columns as given by

1
MSRang = m Z (aij — Qjy — ay; + CLIJ)2 (2)
jeJ
1
MSRang = mZ(Gij — Q;j — ay; —|—a1J)2. (3)
el

After this, node addition is performed on obtained submatrix to get maximal size Bicluster
without increasing the score. Addition of row or column is done only if their MSR < §.
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1.2 Bipartite Spectral Graph Partitioning (BSGP): In [3], Dhillon used BSGP to
model data matrix as G = (R, C, E). This algorithm is based on an exhaustive bicluster enumer-
ation approach, which tries to find partitions of the minimum cut vertex in a bipartite graph
between rows and columns. This can be represented as

cut(Ry UCY, ..R, UCy) = Orlnircl)k cut(O1, O,...0y) 4)
where R and C are two sets of vertices representing rows and columns respectively. E represents
set of edges in graph.

For given disjoint condition clusters, each column cluster has a corresponding row cluster. A
measure of similarity of a gene with a columns cluster is the sum of the edge-weights to all the
columns in the cluster. By this procedure, each of the row clusters can be decided by the column
clusters. The same method is followed for finding the columns in clusters on the basis of the row
clusters. Following this iterative procedure, column clusters decide the gene clusters and then the
rows clusters decide the columns clusters. The aim is to identify a best row and column cluster
to obtain the minimum weight crossing edges between partitions. Computationally, in terms of
time and memory space, it is quite expensive.

1.3 Order Preserving Sub-matrices (OPSM): In [4], algorithm finds order preserving
sub-matrices, which have expression level in strictly increasing linear order. The algorithm uses
a heuristic approach for biclustering problem. A sub matrix can be said to be order preserving
if under the permutation of the conditions the value of the gene expression data is linearly
increasing or decreasing. Since the probability of finding exact order in the bicluster is bleak, an
additional corruption probability F. is introduced which allows an element in the bicluster not
to follow the defined order by probability P.. Let in data matrix A, there is an order preserving
submatrix of size p x ¢. A bound to find the significant model is expressed as

1]

wing =10 -pe 03 (1) (1) (1-1) ) ®

t=q

Although OPSM gives good biclusters, it is less efficient in identifying small and significant
biclusters as formed clusters have support of large rows. Its performance largely depends upon
the parameters used in the algorithm and to the choice of the partial models which is applied
initially. OPSM is quite slow because at a time only one bicluster can be obtained. OPSM is very
much sensitive with respect to its susceptibility to noise.

1.4 Iterative Search Algorithm (ISA): Coherently overlapping biclusters, also referred
as Transcription Modules (TM), can be extracted by iterative search from the gene expression
data matrix as proposed in [5]. At first, a seed bicluster is selected that constitutes randomly
selected rows from the data matrix. The seed is finely tuned by adding rows and columns to it
iteratively until a stable set TM is achieved. Lets represent the m,, TM by a pair of gene vector

g = (g5, g%...g%) and condition vector c,, = (¢}, c2,...cY). For each condition in TM, the average

m bm -

expression level of genes in the TM is above a certain threshold ¢¢ similar to gene’s threshold ¢.
This can be expressed as

Cm = ftc (C%Oj)a

X 6
8., = fio(21%) ©

Atg, te) = {



The threshold function is defined as
fi(x) = : ()
w(Xl)@(XNZ - t)

Series {g ), 8 " } converges to a fixed point gene vector ¢ that satisfies by
9" — 9"
lg* + 97|
where ¢ determines the accuracy of the fixed point ¢*"). Similarly, ¢*") is estimated to obtain the
tinal TM. ISA is a non deterministic and greedy algorithm. It can easily find the stronger and

larger modules with ease but it is quite difficult to extract the weaker and smaller modules from
the data matrix.

<e€ (8)

1.5 Spectral Clustering (kSpectral): Spectral techniques for finding the biclusters are
based on Eigen vectors of data matrix. Spectral biclustering was proposed by Kluger [6]. The
datasets are normalized. Then, Singular value decomposition technique is applied on the mi-
croarray, where the constant part wise Eigen values give the checkerboard patterns in the sub
matrix. Finally, k mean clustering is applied to obtain the checkerboard structures from the data
matrix.The biclusters extracted from the data matrix by this method is up or down regulated. The
normalization can be done in a coupled or independent manner. Independent scaling, bistochas-
tization, or logarithmic interactions are the normalization techniques used by this method.

1.6 Information Theoretic Co-clustering (ITL): In [7], information-theoretic formu-
lation for biclustering is presented. Main concept is to view microarray as the non-negative con-
tingency table and co-clustering as a pair of maps which consists of random clustered variables
for row and column to give row and column cluster respectively. The approach considers input
matrix as a joint probability distribution of row and column variables. Note that the algorithm
tries to cluster both the variables simultaneously. It can be viewed as optimization problem, which
maximizes the mutual information between the clustered random variables subject to constraints
on the number of row and column clusters. In this method, row and column clustering are done
simultaneously at every step and arriving at the local minimum in a finite number of iterations.
Row and column cluster prototypes are created through which the closeness of each row and
column distribution is respectively compared in terms of relative entropy, thus intending to
optimize the loss function and intending to preserve the mutual information. This algorithm can
reduce the problem of high dimensionality and sparsity. Even though, the algorithm is designed
for two dimensional data, this can be extended to multi dimensional data.

1.7 xMotif Algorithm: Muraliet al. [8] proposed a representation for gene expression data
called as conserved gene expression motifs or xMotifs. This algorithm tries to find large conserved
gene expression motifs from the given discretized data matrix. To find biclusters, this algorithm
uses a greedy approach which conserves row. A sub matrix is said to be a conserved motif if the
expression level of a gene is found consistent in the respective sub matrix. Comparing different
gene motifs for different conditions, we get to know of genes which are conserved in multiple
conditions but are in different state in different conditions. To determine xMotif, we need to
compute a set G which contains the conserved gene in it, the state of particular gene and a set C
of condition which match the motif. xMotif is developed on the notion of Projective cluster. The
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algorithm uses a NP-Hard approach to find the largest motifs in the sample by transforming the
objective function of finding the maximum-edge bipartite clique in bipartite graph to maximum
largest motif in the conserved motifs.

1.8 Plaid Algorithm: In this algorithm [9], data matrix can be considered as a superposi-
tion of layers where layer is a subset of genes and conditions of the data matrix. The data is tried
to fit in a plaid model that can be expressed as

B’num

ajj = Z Oij. + pik + Kjk 9)
k=1
where £ is the assumed number of biclusters, 6, is the sum of different responses as described
in [9], pir is a instance bicluster membership indicator variable,it has range from 0 to 1, x;;, is
a sample bicluster membership indicator variable,the range of the indicator variable also lies
between 0 and 1.

1.9 FLexible Overlapped Biclustering (FLOC): Missing values often introduce ran-
dom disturbances and affect the quality of the acquired biclusters, so to remove this problem
FLOC [10] was introduced. FLOC also speeds up the operation of identifying biclusters. The best
bicluster obtained would act as a seed for the other biclusters and this process will be continued
iteratively until the best bicluster is obtained. The overall quality of the bicluster obtained from
FLOC algorithm is defined by the MSR of all specified entries as in (I). The overall quality of the
bicluster obtained from FLOC algortihm is defined by the mean residue of all specified entries as
Eie[, jed r?j

Vrg

MSR;; = (10)
where r;; is the residue of the entry, v;; the volume of the bicluster. The biclusters acquired by this
method give better results for a larger matrix with smaller mean squared residue when compared
with the CC algorithm. In FLOC, there is no issue of missing value but if missing values are quite
high than it would be difficult to extract coherent biclusters, so a parameter o ranging between 0
and 1 is introduced.

1.10 Binary Inclusion Maximal (BiMax) algorithm: An algorithm based on fast
divide and conquer approach was proposed in [11]. It tries to find all the bi maximal biclusters
which contains element 1 only. The algorithm requires the discretization of the gene expression
level matrix into binary matrix by deciding a threshold; elements above it become 1 while
elements below it become 0 which allows it to catalog a large number of biclusters. It divides
the binary matrix into three sub matrices. One of them might contain element 0 therefore it can
be taken out from further scrutiny. On the remaining two sub matrices, the algorithm is applied
iteratively till it does not find biclusters containing element 1 only. The performance of the BiMax
can be reduced drastically in case of large number of recursive calls. Also, in the presence of noise
in the data matrix it can produce a huge number of biclusters.

1.11 Large Average Submatrix (LAS): A statistically advanced biclustering algorithm
which finds large average sub matrix within the data matrix was presented in [12]. The algorithm
uses a Gaussian null model for expressed data. A significance score based on the Bonferroni
corrected p-value is calculated for each bicluster sub matrix. The calculated significance score is
motivated by the Normal Cummulative Distribution Function. So, the LAS Algorithm finds the
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bicluster to give the largest significance score. LAS can be described as sum of k£ overlapping
biclusters and an additive noise £ given as

B num

a; =Y LF(Gel, jel)+¢ (11)

k=1

Now, significance score is calculated using the Null model. The elements of the data matrix
are subtracted from the mean of the significance score to form a residual matrix.

1.12 Factor Analysis for Bicluster Acquisition (FABIA): Hochreiter et al. [13] pre-
sented a multiplicative model biclustering algorithm that takes linear alliance of genes and
conditions into account. In multiplicative model, the row and column vector need to be multiple
of each other. FABIA models the data matrix as the addition of k biclusters and an additive noise.
Here, linear dependency of subsets of rows and columns can be described by outer product uxv?.
Here genes which are not present in bicluster are represented as 0. The overall model is given by

Bnum

A= Z wv, + €. (12)
t=1
FABIA uses a two factor analysis for generation of biclusters. Also, the relationship between
genes and conditions are generally defined by fuzzy and thresholds are used for unique biclusters.
Generally, FABIA forms few biclusters due to presence of small number of conditions and
performs poorly for small dataset.

1.13 BitBit Algorithm: In this algorithm [14], the bit-patterns are extracted from the data
matrix using two phase process. First phase includes a novel encoding process to divide the
columns of the data matrix to a certain length determined by the minimum number of columns
(mnc). In the second phase, biclustering of bit-patterns takes place using selective search. Each
pair of row generates a pattern. An initial bicluster is generated if the number of elements in
the pattern is more than mnc and the pattern has not been generated previously. Now, rows are
added to the bicluster if the pattern generated by subsequent rows matches the pattern . Bicluster
is considered as valid, if the number of rows in the final bicluster is greater than or equal to
the minimum number of rows (mnr). In the final bicluster, required input parameters are Binary
Input Matrix, mnr, mnc. After the encoding step, the comparison between rows takes place at
bit level. As a result, the dimension of the data matrix and the operation required in the second
phase would be reduced significantly. Experiments shows that BitBit can generate similar results
when compared to BiMax while taking less computational time and less no of biclusters. The
result also show BitBit maintained its shape to the size as well as density of input data.

1.14 BiSim Algorithm: Excessive computations can also be tackled by using the iterative
approach instead of the divide and conquer approach as in BiMax by avoiding recursion and
also additional traversals of the matrix [15]. First of all, the column starting index, column ending
index and row number for each row wise bicluster are identified. Then, larger biclusters are
formed by comparing the similarity between the column starting index and column ending index
of the row wise biclusters. Row index based comparisons are also performed. So, they identified
the biclusters with only one traversal of the matrix in O(n x m) complexity.
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1.15 MSVD Algorithm: Wang et al. [16] proposed an algorithm which is called MSVD-
MOEB (Modular Singular Value Decomposition Multi-Objective Evolutionary biclustering). Al-
gorithm splits the gene expression data matrix into a set of sub-matrices with equal dimensions
into a non-overlapping manner. SVD is performed on the partition sub-matrices. SVD factorizes
any kind of matrices either rectangular or squared in dimension into unitary matrices and a

diagonal matrix as
A =USV”. (13)

Then it projects the data obtained for desired number of eigen values and applies k-means
clustering to cluster them. Thus, identifying the number of biclusters for defined number of
clusters and repeats it for all the other sub matrices split from the data matrix.

1.16 QUalitative BIClustering (QUBIC): Deterministic algorithm which calculates
biclusters in the discretized matrix by employing a qualitative or semi-qualitative means to gene
expression data and optimization techniques was proposed in [17]. In this algorithm, expression
level of genes is expressed in qualitative or semi-qualitative manner under multiple conditions as
an integer value. Now, we consider a pair of genes and determine under how many conditions
they share the same expression level. Similarly, for negatively related patterns we look for genes
with opposite signs. It can find positive as well as negative correlated expression levels. The basic
aim of the algorithm is to find sub matrices according to some optimization function or criteria.

1.17 Robust Biclustering Algorithm (ROBA): Tchagang et al. proposed ROBA [18],
where basic linear algebra techniques were used. There are three main steps of this algorithm. First
step involves pre-processing of data to handle missing values and noise. Second step decomposes
the given data matrix into binary matrices. Last step involves identification of bicluster on the
basis of type of bicluste i.e. bicluster with constant value, constant value on rows, constant value
on columns, coherent value, and coherent evolution. For example, to extract constant value on
rows biclusters distinguishable non-zero rows of all the elementary matrices are found. Similarly
to find constant value on column biclusters search is performed for distinguishable non-zero
columns. It also finds biclusters with coherent value. Various variants of Roba were later proposed
like time and space efficient implementation in which authors have reduced the time and space
complexity of the basic ROBA algorithm by a factor of A\, where A represents the number of
distinct values of the data matrix where they did not check the number of duplicate biclusters
considering that they will not produce much substantial variation being the duplicate biclusters
nominal in number

2 BIDEAL: ACCESSIBLE VALIDATION INDICES FOR PERFORMANCE MEASURES

Since there is no optimal algorithm for finding biclusters, various indices are used to check the
quality of the biclusters. The validation indies present in BIDEAL toolbox are described in further
subsections.

2.1 Jaccard Coefficient: Sebastian et al. [19] has proposed Jaccard index. This index com-
pares the biclusters obtained by applying the two different biclustering algorithms and finding
out the number of similar biclusters between them. Jaccard index is given as

- jac(Bl, BQ)

jace(By,By) = (14)

max ( 7 acc) '
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Jaccard index gives a value of zero if the biclusters given by the two different algorithms are
totally dissimilar and gives a value of 1, if all the biclusters mined by the two algorithms are
completely same.

2.2 SB Score: Differential co expression ranking score was proposed in [20]. Lets assume we
have two biclusters, B; and B,. Here, B, is formed by gene under first set of conditions, while B,
is formed by same gene with second set of conditions. Chia proposed algorithm to compare the
goodness of gene w.r.t to two different set of conditions. If B; is good gene than there will be co-
expression between gene and first set of conditions while differential co-expression between gene
and second set of condition. Quantification of differential co-expression [20] can be measured
using SB (B;) score of B; bicluster as

SB(B)) = log (maz(TI(Bl) +w), maz(Q1(By) + w)) (15)

max(Ty(By) + w), maz(Q2(By) + w)

where w is used to offset the large ratios.

2.3 Constant Variance: In [21], corresponding variance of genes/conditions as the average
of the sum of Euclidean distances between rows and columns of bicluster (biclusterwise and
overall) is taken into consideration. Higher the value of variance lowers the quality of bicluster.
The expression of the variance is given as

var = Z (aij — ary)*. (16)

iel,jeJ

2.4 Sign Variance: To measure coherence of a bicluster Sign Variance is used. For more
coherant bicluster, value of sign variance is lower. It is same as constant variance except it
preprocesses the data matrix into sign matrix and then estimates variance.

2.5 Hausdroff Distance: This quality index is based on Hausdorff distance. Distance
between the biclusters signifies the dissimilarity between them [22]. Hausdroff distance calculates
the distance between the pair of sub matrices obtained from the input gene expression data
matrix. So, Hausdorff distance is the maximum distance for traversal from the element of first
bicluster to the nearest element of second bicluster. Lets take B; and B,, from same metric space.
Mathematically, Hausdorff can be modeled as

HD (Blu BQ) == max{supbeBlinf66327

, : (17)

d(by, by), supyes, in fues,, d(b1, b2) }
2.6 Mean Residue Score: To calculate mean residue score, mean square error (MSE) of
the each and every bicluster of a particular algorithm can be calculated and then overall MSE can
be calculated by taking the mean of the individual values.

3 BIDEAL: TESTING AND VALIDATIONS ON BENCHMARK DATASETS

For the testing and validation of developed toolbox, four different datasets Saccharomyces cere-
visiae cell cycle dataset (Yeast) [2], Leukemia adatset (ALL vs. AML) [23]], Mammary tissue profile
dataset (GDS205) [24], and Ligand screen in B cells dataset: Epstein Barr virus-induced molecule-
1 [25] have been considered. Figs. show the validity indices obtained using biclustering
algorithms embedded in BIDEAL on four datasets. Table [l shows the number of biclusters



TABLE 1: Number of biclusters using 17 algorithms available in BIDEAL on four datasets.

Dataset CC | BSGP | OPSM | ISA | kSpectral | ITL | xMotif | Plaid | Floc | BiMax | LAS | Fabia | BitBit | BiSim | MSVD | Qubic | ROBA
seset | ol | gl | @ | B | e | | B | 6 | g0 | o | g2 | 03 | pal | (s | fe | (7 | s
Yeast [2] 100 | 10 16 16 B 1 97 ! 20 75 20 2 212 | 1547 3 0 10104
ALLvsAML 23] | 1 - 37 | 500 B 100 | 89 ! 20 100 52 5 s s 100 - 32591
GDS205 4] | 1 7 7 3 6 B 5 . 20 11 5 5 . 1 3 10 3925
GDS301 [25] 1 . 10 1 B 100 | 39 - 20 100 5 1 1 il 1 - B
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CC |BSGP |OPSM  ISA ksrgf“ ITL |xMotif| Plaid | FLOC | Bimax LAS F‘ZBI BiBit | BiSim MSV Q[(J:BI ROBA
@Jaccard Index 1 0.0003 | 0.0077 | 0.0003 0 0.0002 [ 0.0211 | 0.0003 | 0.0019 | 0.0004  0.0022  0.002 | 0.0002 | 0.0002 | 0.0049 | 0.0004 0
OSB Score 0.111 1 0.0997 | 0.1701 | 0.0997 | 0.0997 | 0.0529 [ 0.1328 | 0.1092 | 0.114 | 0.1018 0 0.0997 0.1 |0.2815]0.0997|0.1129
@ Sign Variance 0.9947 | 0.4991 | 0.3602 | 0.7973 0 0.2966 0 0.1075| 0.196 [0.1361 0.1942|0.7619| 0.6732 0.5804  0.869 1 0.0828
B Constant Variance | 0.2198 | 0.0804 | 0.2405 1 0 0.1905 0 0.0925(0.1174(0.0769 | 0.1263 | 0.5553 | 0.2488 | 0.1889 | 0.5411 | 0.2756| 0.01

Fig. 1: Validation indices for quality of biclusters formed using various biclustering algorithms

on Yeast data
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CC | BSGP |OPSM | ISA [;TCH ITL |xMotif| Plaid FLOC |Bimax LAS FABIA BitBit | BiSim | MSVD QUBIC| ROBA

@ Jaccard Index 1 0 [0.006150.00E+0| 0 [2.77E-0 1 0 0 [3.84B-0 0.0009 0 0 0 [0.003580.00259| 0
OSB Score 0 0 0 0.00419] 0 0 0 |0.0264 00039 0 0 0 0 0 0 0 0
@Sign Variance  (0.39872 0 1 1 0 1 0.04088 1 1 1 1 0 0 0 1 1 1
BConstant Variance 0.22193 1 |0.107230.06991| 0 |0.06667/0.04088 0.0468 0.00515(0.00246 0.0422 1 1 1 10.18296/0.08743/0.00641

Fig. 2: Validation indices for quality of biclusters formed using various biclustering algorithms
on ALL vs. AML dataset
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CC | BSGP |OPSM | ISA g‘l’c ITL |xMotif Plaid FLOC Bimax| LAS FABIA BitBit | BiSim | MSVD QUBIC| ROBA

BJaccard Index 1 [0.001560.04844]0.0275 0.00109 0.00109 0 0.054190.00187/0.00103 0.0174 0 1 | 0.001 |0.0414 0.00026
OSB Score 0.56804/0.568040.56804/0.68443 0.56804 0 |0.568040.58429 1  |0.56804/0.573980.56804/0.56804/0.62203/0.57696 0.56804
BSign Variance  |0.079570.21709 0.39049/0.18842 0.3668 0 0 |0.054140.188350.84639 1 0 [0.07957/0.26646/0.09832/0.17081
B Constant Variance |0.05528/0.197810.16943(0.24583/0.10481 0 0 [0.03694 1 |0.586 0 0 [0.05528 0.1874 0.25851] 0

Fig. 3: Validation indices for quality of biclusters formed using various biclustering algorithms
on GDS205 dataset
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@Jaccard Index OSB Score M@ Sign Variance B Constant Variance
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g 08
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CC | BSGP OPSM ISA ks‘;?m ITL |xMotif | Plaid | FLOC Bimax | LAS |FABIA| BiBit | BiSim MSVD QUBIC ROBA
mJaceard Index 1 0 | 0025 01665 0 |420E-0/000213] 0 00645 521E-0|0.0314 | 0.0064 | 1 1 0213 0 0
OSB Score 0 0 | 009 00605 0 | 016 | 0 0 100888 | 0.107 | 0.14 | 00185 0 0 0 0 0
mSign Variance 0027 | 0 | 033 | 006 | O | 003 | 0 0 1 00829| 026 0.1 0 0 00442 0 0
mConstant Variance | 00139 0 | 0023 009 | 0 | 0078 | o0 0 | 013 017 | 016 021 0 0 00849 0 0

Fig. 4: Validation indices for quality of biclusters formed using various biclustering algorithms
on GDS301 dataset

obtained using biclustering algorithms embedded in BIDEAL on four datasets. The first dataset
consists of 2884 genes and 17 conditions and second dataset consists of 3571 genes and 72
conditions. Third dataset comprises 822 genes and 8 conditions. Fourth dataset comprises of
16271 genes and 11 conditions. To process the data first preprocessing has been performed, then
one by one each of the algorithms was executed to obtain biclusters. Next step was to check
the validity of generated biclusters. All validation indices were normalized between 0-1. Each
algorithm is run either using default parameters or random initialization as needed.
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