
1

An Introduction to MPI with
Python

Prof. Amey Karkare

Dr. Anando Gopal Chatterjee

2

Acknowledgements / Disclaimer

• Reused slides by
– Preeti Malakar
– Stephen Weston

• Rather than having an independent tutorial,
we shall compare Python-MPI support with
the C version

If you install Anaconda3 on your local system, mpi4py must be
installed using

$ conda install mpi4py

and “mpiexec” of anaconda3 must be used. To verify that write
$ which mpiexec

You must get the path of anaconda installation in its output.

To run a code in 8 cores type

$ mpiexec -n 8 python eg1.py

Anaconda 3

4

Python-MPI Sources

• Many Python modules support parallel computing.
• See http://wiki.python.org/moin/ParallelProcessing
• Some active ones:

– mpi4py
– multiprocessing
– jug

– Celery

– dispy

– Parallel Python

http://wiki.python.org/moin/ParallelProcessing

5

The mpi4py module
• Python interface to MPI
• Based on MPI-2 C++ bindings
• Almost all MPI calls supported

• Popular on Linux clusters and in the SciPy community

• Operations are primarily methods on communicator
objects

• Supports communication of pickleable Python objects

• Optimized communication of NumPy arrays

• API docs:
http://pythonhosted.org/mpi4py/apiref/index.html

6

A Minimal MPI Program (C)

7

A Minimal MPI Program (Python)

from mpi4py import MPI

comm = MPI.COMM_WORLD

size = comm.Get_size()

rank = comm.Get_rank()

name = MPI.Get_processor_name()

print(“Hello I am rank %d of %d” %

 (rank, size))

8

Notes on C and Python

• C and Python bindings correspond closely

• In C, mpi.h must be #included

• In Python, MPI must be imported from mpi4py
module

• In C,
– MPI_Init and MPI_Finalize are called explicitly

• In Pyhton,
– MPI Init is called when mpi4py is imported

– MPI Finalize is called when the script exits

9

MPI Basic Send/Receive

• We need to fill in the details in

• Things that need specifying:
– How will “data” be described?

– How will processes be identified?
– How will the receiver recognize/screen messages?
– What will it mean for these operations to complete?

Process 0 Process 1

Send(data)

Receive(data)

send and recv

• “send” and “recv” are the most basic
communication operations.

• comm.send(obj, dest, tag=0)
• comm.recv(source=MPI.ANY SOURCE,

tag=MPI.ANY TAG, status=None)
• These are blocking operations

– can cause your program to hang.

10

Example
from mpi4py import MPI

comm = MPI.COMM_WORLD

rank = comm.Get_rank()

if rank == 0:

 msg = 'Hello, there'

 comm.send(msg, dest=1)

elif rank == 1:

 s = comm.recv()

 print "rank %d: %s" % (rank, s)
11

Other operations

12

13

14

15

16

Sending Python Objects

• Generic Python objects can be sent between
processes using the “lowercase”
communication methods if they can be
pickled.

• Buffer-provider objects can be sent between
processes using the “uppercase”
communication methods which can be
significantly faster.

17

18

Tutorial

https://mpi4py.readthedocs.io/en/stable/tutorial.
html

- Lots of Examples

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

