Krithika Ver

ESc101: Variable Types

Instructor: Krithika Venkataramani
Semester 2, 2011-2012

(krithika@cse.iitk.ac.in)

The content of these slides are taken from the lecture
slides of Prof. Arnab Bhattacharya, Prof. R.K. Ghosh,
Prof. Dheeraj Sanghi and Prof. Manindra Agrawal

Krithika \ i (krithika@cse.iitk.ac.in)

3/13/2012

Variables

Variables signify data that may be modified

Name of a variable can contain letters, digits and underscore _
~ Example: i, y2k, big_name, bigger_name_2

Case-sensitive: camel, CAMEL and CaMeL are different

Name cannot start with a digit
~ Example: 1d is not valid

Types of Variables

m Each variable ‘type’ represents the domain of values
~ Integer: int or char
~ Character: char
~ Boolean: int or char
~ real: double or float

m However, they can store only a subset of the domain
~ int can store numbers from -2%1 to 2%1-1

m Name can start with an underscore, but do not do so . . s
I m Initial values of variables are specified as constants of the
~ Example: avoid valid names such as _bad
. . same type
m Certain keywords are special <inti=o:
N They a:e-rese_rve_z;i and cannot be used ~ doubled = 1.4;
~ Example: main, i ~ charc="A'
3
Krithika Ver (krithika@cse.iitk.ac.in) Krithika \ i (krithika@cse.iitk.ac.in)

3/13/2012

Krithika Ver

Example Program to Add two numbers

[* Program to add two numbers */
#include <stdio.h> // Include headers

void main() // Main function
{
inta=2, b=3, c; /I Declare variables

scanf("%d", &a); // Read 'a' from keyboard
scanf("%d", &b);
c=a+thb;
printf("%d\n", c);
1

I Read 'b' from keyboard

I Write 'c' to screen

(krithika@cse.iitk.ac.in)

Krithika \

Different Data Types

Different types are needed because one type is not suitable
for representing data of another type.

Mixing types may result in precision loss, overflow,
underflow

Application performance suffers while performing
numerically intensive computation if inappropriate data types
are used.

Exceptions must be handled explicitly or they lead to errors.

Use of appropriate type is important both for efficiency and
correctness

i (krithika@cse.iitk.ac.in)

Integer Types Integer Representation
m Two different int types: signed and unsigned We represent integers as binary numbers
m Maximum signed int in 16 bit: 011111111111111, i,e., 215-1 For example: 56 will be stored as
m Maximum unsigned int in 16 bit; 111111111111111, i.e., 226 -1 00111000
m Possible types to suit our needs are: How do we store negative numbers?
~ short int, unsigned short int, unsigned int, long int, unsigned long int. N Istbitof men.wory is usually the sjgn bit .
~ In case of 8 bit memory, only 7 bits are for magnitude.
~ Similarly 32-bit memory would have 31 bits for magnitude
~ Hence the largest positive integer that can be stored in an integer
variable on our PCs is: 231 - 1.
~ Smallest number:
There are variations on storing magnitude
Overflow: Trying to store numbers outside the range
Krithika Ver (krithika@cse.iitk.ac.in) Krithika \ 1i (krithika@cse.iitk.ac.in) !

Different Real Number Types

m Real numbers of arbitrary precision cannot be represented
m Different types: float, double, long double

m double is more accurate than float

~ 1/3is printed as 0.33333334326.. as a float, but 0.33333333333.. as a
double

m double is used for precision critical calculations
m By default floating point constants are stored as a double.
~ To force float constant should be suffixed with f, i.e., 7.5f or 7.5F.

m Format specifier "%If", "%Lf" are used for using double and
long double using scanf/printf

Krithika Ver (Krithik .iitk.ac.in)

3/13/2012

Representation of Real Numbers

Use the scientific notation: f * bk
With this notation, we need to store f and k.
We also need to decide the value of ‘b’.
The most commonly used representation is:
~ Use 1 bit for sign
~ Value of b is taken as 2
~ Use 8 bits to store k (called exponent)

~ Use 23 bits to store f (called mantissa), in normalized form with
integer part of the fraction to be exactly 1 (e.g. 1.0011)

Exponent can be from -127 to +126
So the range is from 2127 to 2126, or 10 to 10*38 approx.

Krithika \ i (krithika@cse.iitk.ac.in)

Errors in representing real numbers

m There are three types of errors:
~ Underflow: Trying to store exponent less than -127
~ Overflow: Trying to store exponent more than 126
~ Rounding off: Storing the nearest floating point number
m Floating point arithmetic
N The hardware has to do a lot more for floating point arithmetic
compared to integer arithmetic
m Do not store numbers as floating point, unless you really
need fractions

Krithika Ver (krithika@cse.iitk.ac.in)

Range of different data types

= Variables are stored in a predefined space

= A unit of storage is a Byte

= A Byte has space to store a sequence of 8 binary digits

= Different variable types have different storage space assigned
= Assignment of space is machine dependent

Space assigned in Bytes

char 1 -27 to (2'-1)
unsigned char 1 0to (28-1)

short int 2 =215 to (215-1)
unsigned short int 2 Oto (216-1)

int 4 -2% to (2%1-1)
unsigned int 4 Oto (2%-1)

float 4 (approx) £[10%, 10%]
double 8 (approx) £[10-308, 10308]

Krithika \ i (krithika@cse.iitk.ac.in)

Input and output of variables

m Correct type specification must be used

Format Specifer

char %c

int %d
unsigned int %u

float %f, %a, %e
double %If

long double %Lf

m scanf is for input
~ Format: scanf(“<specification>”, &<name>);
~ E.g. cis achar: scanf(“%c”, &c);

m printfis for output
~ Format: printf(“<specification>”, <name>);

~ E.g. cis achar: printf("%c", c);
Krithika Ver (krithik Jitk.ac.in)

m ASCII character set is most widely used

Krithika \

3/13/2012

Character type

Variable type ‘char’ used for representing characters

Characters are special integers of much shorter size
~ Only 256 characters can be represented

Digits 0-9 are not represented by 00000000 - 00001001

0-9 represented by a continuous sequence

Similarly A-Z (a-z) also represented by a continuous

sequence

~ specifies a standard that maps characters to numbers 0-127
~ Extended ASCII assigns symbols to numbers 128-255
~ ASCIl and Extended ASCII use 1 Byte for storage
m Unicode includes characters from all languages of the world

~ Unicode uses 2 Bytes
i (krithika@cse.iitk.ac.in)

The ASCII Table

Dgc HxOct Chae Dec W Ot Himl Chr [Dec e Oct Hir
0 0000 WL (Eull) 32 20 040 : Space| 64 20 100 o)
1 1001 508 t of hending) 33 21 041 €#33: !
z 2002 £ 34 22 042 £#24:
3 3 003 ETX (: 35 23 043 #2528
4 4004 EOT [end of transwission] | 36 24 044 §
5 5 00% END (enquacy) 37 2% 043 .
& & 006 ACK [acknowledge] 29 26 046 69387 &
7 7 007 BEL (bell) 33 27 047 «#39;
4 & 0l0 B5 (backzpace] an; |
9 % 011 TAB (horizomeal eab) 3|
10 A 012 LF (NL line feed, mew line) az: *
11 B 013 VT (vercical eab) 43 2B 053 e#dd: +
12 € 014 FF (NP fors feed, new page)| 44 2C 054 cfdd: ,
13 D OIS CR [enreiage Eecuen) 45 2D 055 e#as; -
14 E 016 30 [shift out) 46 IE 056 s#46; .
15 FOLT 51 (shift in) 4T IF 05T 6R4T:
16 10 020 DLE [data link eacape) 4030 060 s#452 0
17 11 D21 DCL [device control 1) 42 31 061 s#457 1

"2 [device comtrol) 50 32 062 efS0: 2
[device central 3) 3
[device control 4) 4

21 1% 025 HAK (negative acknowledge) 5
22 16 026 SYN (symchiondus idle) €
23 17 027 ETD (end of trans. bBlock) 1
24 10 030 CAN [cancel)]

5

25 19 001 EM (end of medium]

26 1A 032 SUB (substitute)

27 1B 033 E5C (eacape)

20 1C 034 F5 (file sepacator)
29 10 035 65 (gEoup separator]
30 1E 036 B5 (cecord sepazazor)

31 1F 037 U5 (unde sepazacoc) 63 3F 077 edfd: 2 95 5F 137 «#85:

Krithika

Printing the Code of a Character

[*Program to print the code of a character*/

#include <stdio.h>

void main()

{
int code; //Declare variable to store the code
code = (int) getchar(); //Asking user to input the character
printf("%d", code); //printing the code of the character

\ i (krithil iitk.ac.in)

Krithika Ver (krithika@cse.iitk.ac.in)

3/13/2012

Additional data types Additional formats for octal and hexadecimal

Data type Format specifier | Size (machine | Range
dependent)

%d(decimal), %i 4 bytes -2%-1t0 2% -1 "
() y Data type Format Display/ Read
un5|gned int %u 4 bytes 0to2%-1 specifier
short int (unsigned) - %hd (9hu) 2bytes 20271 unsigned int %0 unsigned octal integer
long int (unsigned) %ld (%lu) 8 bytes 283110 263-1 g 0 g g
. . oy 0 . N
T %c, %d 1byte 12810127 unsigned int 00X, %X unsigned hexadecimal integer
unsigned char %u, %d 1byte 010 255 unsigned longint ~ %lo unsigned octal integer
string %S array of - unsigned longint %Ix, %IX unsigned hexadecimal integer
CILLEL S unsigned shortint ~ %ho unsigned octal integer

float a0 e 4bytes 3:4x10%103.4x10% unsigned shortint %hx, %hX unsigned hexadecimal integer
double %If, %Ig, %le 8bytes 17x10% to 1.7x10% g ALy e 9 9
long double %Lf, %Lg, %Le 16 bytes ?

1bit:1or0 1 Byte: 8 bits

Note: for 32-bit machines long int and int are same 1 "

Krithika Ver i (krithika@cse.iitk.ac.in) Krithika \ i (krithil iitk.ac.in)

