
3/13/2012

1

ESc101: Variable Types

1
Krithika Venkataramani (krithika@cse.iitk.ac.in)

Instructor: Krithika Venkataramani

Semester 2, 2011-2012

The content of these slides are taken from the lecture

2
Krithika Venkataramani (krithika@cse.iitk.ac.in)

The content of these slides are taken from the lecture
slides of Prof. Arnab Bhattacharya, Prof. R.K. Ghosh,
Prof. Dheeraj Sanghi and Prof. Manindra Agrawal

Variables

 Variables signify data that may be modified

 Name of a variable can contain letters, digits and underscore _
 Example: i, y2k, big_name, bigger_name_2

 Case-sensitive: camel, CAMEL and CaMeL are different

 Name cannot start with a digit

3
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 Example: 1d is not valid

 Name can start with an underscore, but do not do so
 Example: avoid valid names such as _bad

 Certain keywords are special
 They are reserved and cannot be used

 Example: main, if

Types of Variables

 Each variable ‘type’ represents the domain of values
 Integer: int or char

 Character: char

 Boolean: int or char

 real: double or float

 However they can store only a subset of the domain

4
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 However, they can store only a subset of the domain
 int can store numbers from -231 to 231 -1

 Initial values of variables are specified as constants of the
same type
 int i = 0;

 double d = 1.4;

 char c = 'A'

3/13/2012

2

Example Program to Add two numbers

/* Program to add two numbers */
#include <stdio.h> // Include headers
void main() // Main function
{
int a=2, b=3, c; // Declare variables

f("%d" &) // R d ' ' f k b d

5
Krithika Venkataramani (krithika@cse.iitk.ac.in)

scanf("%d", &a); // Read 'a' from keyboard

scanf("%d", &b); // Read 'b' from keyboard
c = a + b;
printf("%d\n", c); // Write 'c' to screen
}

Different Data Types

 Different types are needed because one type is not suitable
for representing data of another type.

 Mixing types may result in precision loss, overflow,
underflow

 Application performance suffers while performing
numerically intensive computation if inappropriate data types

6
Krithika Venkataramani (krithika@cse.iitk.ac.in)

numerically intensive computation if inappropriate data types
are used.

 Exceptions must be handled explicitly or they lead to errors.

 Use of appropriate type is important both for efficiency and
correctness

Integer Types

 Two different int types: signed and unsigned

 Maximum signed int in 16 bit: 011111111111111, i,e., 215 - 1

 Maximum unsigned int in 16 bit: 111111111111111, i.e., 216 - 1

 Possible types to suit our needs are:
 short int, unsigned short int, unsigned int, long int, unsigned long int.

7
Krithika Venkataramani (krithika@cse.iitk.ac.in)

Integer Representation

 We represent integers as binary numbers
 For example: 56 will be stored as

 00111000

 How do we store negative numbers?
 1st bit of memory is usually the sign bit

 In case of 8 bit memory only 7 bits are for magnitude

8
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 In case of 8 bit memory, only 7 bits are for magnitude.

 Similarly 32-bit memory would have 31 bits for magnitude

 Hence the largest positive integer that can be stored in an integer
variable on our PCs is: 231 – 1.

 Smallest number:

 There are variations on storing magnitude

 Overflow: Trying to store numbers outside the range

3/13/2012

3

Different Real Number Types

 Real numbers of arbitrary precision cannot be represented

 Different types: float, double, long double

 double is more accurate than float
 1/3 is printed as 0.33333334326.. as a float, but 0.33333333333.. as a

double

d bl i d f i i iti l l l ti

9
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 double is used for precision critical calculations

 By default floating point constants are stored as a double.
 To force float constant should be suffixed with f, i.e., 7.5f or 7.5F.

 Format specifier "%lf", "%Lf" are used for using double and
long double using scanf/printf

Representation of Real Numbers

 Use the scientific notation: f * bk

 With this notation, we need to store f and k.

 We also need to decide the value of ‘b’.

 The most commonly used representation is:
 Use 1 bit for sign

10
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 Value of b is taken as 2

 Use 8 bits to store k (called exponent)

 Use 23 bits to store f (called mantissa), in normalized form with
integer part of the fraction to be exactly 1 (e.g. 1.0011)

 Exponent can be from -127 to +126

 So the range is from 2-127 to 2126, or 10-38 to 10+38 approx.

Errors in representing real numbers

 There are three types of errors:
 Underflow: Trying to store exponent less than -127

 Overflow: Trying to store exponent more than 126

 Rounding off: Storing the nearest floating point number

 Floating point arithmetic
 The hardware has to do a lot more for floating point arithmetic

11
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 The hardware has to do a lot more for floating point arithmetic
compared to integer arithmetic

 Do not store numbers as floating point, unless you really
need fractions

Range of different data types

Type Space assigned in Bytes Range

 Variables are stored in a predefined space
 A unit of storage is a Byte
 A Byte has space to store a sequence of 8 binary digits
 Different variable types have different storage space assigned
 Assignment of space is machine dependent

12
Krithika Venkataramani (krithika@cse.iitk.ac.in)

char 1 - 27 to (27-1)

unsigned char 1 0 to (28-1)

short int 2 - 215 to (215-1)

unsigned short int 2 0 to (216-1)

int 4 - 231 to (231-1)

unsigned int 4 0 to (232-1)

float 4 (approx) [10-38, 1038]

double 8 (approx) [10-308, 10308]

3/13/2012

4

Input and output of variables

 Correct type specification must be used
Type Format Specifier

char %c

int %d

unsigned int %u

float %f, %g, %e

13
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 scanf is for input
 Format: scanf(“<specification>”, &<name>);

 E.g. c is a char: scanf(“%c”, &c);

 printf is for output
 Format: printf(“<specification>”, <name>);

 E.g. c is a char: printf(``%c'', c);

, g,

double %lf

long double %Lf

Character type

 Variable type ‘char’ used for representing characters

 Characters are special integers of much shorter size
 Only 256 characters can be represented

 Digits 0-9 are not represented by 00000000 - 00001001

 0-9 represented by a continuous sequence

14
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 Similarly A-Z (a-z) also represented by a continuous
sequence

 ASCII character set is most widely used
 specifies a standard that maps characters to numbers 0-127

 Extended ASCII assigns symbols to numbers 128-255

 ASCII and Extended ASCII use 1 Byte for storage

 Unicode includes characters from all languages of the world
 Unicode uses 2 Bytes

The ASCII Table

15
Krithika Venkataramani (krithika@cse.iitk.ac.in)

Printing the Code of a Character

/*Program to print the code of a character*/

#include <stdio.h>

void main()

{

int code; //Declare variable to store the code

16
Krithika Venkataramani (krithika@cse.iitk.ac.in)

code = (int) getchar(); //Asking user to input the character

printf("%d", code); //printing the code of the character

}

3/13/2012

5

Additional data types
Data type Format specifier Size (machine

dependent)
Range

int %d(decimal), %i 4 bytes -231 -1 to 231 -1

unsigned int %u 4 bytes 0 to 232 -1

short int (unsigned) %hd (%hu) 2 bytes -215 -1 to 215 -1

long int (unsigned) %ld (%lu) 8 bytes -263 -1 to 263 -1

char %c %d 1 byte -128 to 127

17
Krithika Venkataramani (krithika@cse.iitk.ac.in)

char %c, %d 1 byte -128 to 127

unsigned char %u, %d 1 byte 0 to 255

string %s array of
characters

--

float %f, %g, %e 4 bytes 3.410-38 to 3.41038

double %lf, %lg, %le 8 bytes 1.710-308 to 1.710308

long double %Lf, %Lg, %Le 16 bytes ?

1 bit: 1 or 0 1 Byte: 8 bits
Note: for 32-bit machines long int and int are same

Additional formats for octal and hexadecimal

Data type Format
specifier

Display/ Read

unsigned int %o unsigned octal integer

unsigned int %x, %X unsigned hexadecimal integer

18
Krithika Venkataramani (krithika@cse.iitk.ac.in)

g g g

unsigned long int %lo unsigned octal integer

unsigned long int %lx, %lX unsigned hexadecimal integer

unsigned short int %ho unsigned octal integer

unsigned short int %hx, %hX unsigned hexadecimal integer

