
3/13/2012

1

ESc101: Variable Types

1
Krithika Venkataramani (krithika@cse.iitk.ac.in)

Instructor: Krithika Venkataramani

Semester 2, 2011-2012

The content of these slides are taken from the lecture

2
Krithika Venkataramani (krithika@cse.iitk.ac.in)

The content of these slides are taken from the lecture
slides of Prof. Arnab Bhattacharya, Prof. R.K. Ghosh,
Prof. Dheeraj Sanghi and Prof. Manindra Agrawal

Variables

 Variables signify data that may be modified

 Name of a variable can contain letters, digits and underscore _
 Example: i, y2k, big_name, bigger_name_2

 Case-sensitive: camel, CAMEL and CaMeL are different

 Name cannot start with a digit

3
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 Example: 1d is not valid

 Name can start with an underscore, but do not do so
 Example: avoid valid names such as _bad

 Certain keywords are special
 They are reserved and cannot be used

 Example: main, if

Types of Variables

 Each variable ‘type’ represents the domain of values
 Integer: int or char

 Character: char

 Boolean: int or char

 real: double or float

 However they can store only a subset of the domain

4
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 However, they can store only a subset of the domain
 int can store numbers from -231 to 231 -1

 Initial values of variables are specified as constants of the
same type
 int i = 0;

 double d = 1.4;

 char c = 'A'

3/13/2012

2

Example Program to Add two numbers

/* Program to add two numbers */
#include <stdio.h> // Include headers
void main() // Main function
{
int a=2, b=3, c; // Declare variables

f("%d" &) // R d ' ' f k b d

5
Krithika Venkataramani (krithika@cse.iitk.ac.in)

scanf("%d", &a); // Read 'a' from keyboard

scanf("%d", &b); // Read 'b' from keyboard
c = a + b;
printf("%d\n", c); // Write 'c' to screen
}

Different Data Types

 Different types are needed because one type is not suitable
for representing data of another type.

 Mixing types may result in precision loss, overflow,
underflow

 Application performance suffers while performing
numerically intensive computation if inappropriate data types

6
Krithika Venkataramani (krithika@cse.iitk.ac.in)

numerically intensive computation if inappropriate data types
are used.

 Exceptions must be handled explicitly or they lead to errors.

 Use of appropriate type is important both for efficiency and
correctness

Integer Types

 Two different int types: signed and unsigned

 Maximum signed int in 16 bit: 011111111111111, i,e., 215 - 1

 Maximum unsigned int in 16 bit: 111111111111111, i.e., 216 - 1

 Possible types to suit our needs are:
 short int, unsigned short int, unsigned int, long int, unsigned long int.

7
Krithika Venkataramani (krithika@cse.iitk.ac.in)

Integer Representation

 We represent integers as binary numbers
 For example: 56 will be stored as

 00111000

 How do we store negative numbers?
 1st bit of memory is usually the sign bit

 In case of 8 bit memory only 7 bits are for magnitude

8
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 In case of 8 bit memory, only 7 bits are for magnitude.

 Similarly 32-bit memory would have 31 bits for magnitude

 Hence the largest positive integer that can be stored in an integer
variable on our PCs is: 231 – 1.

 Smallest number:

 There are variations on storing magnitude

 Overflow: Trying to store numbers outside the range

3/13/2012

3

Different Real Number Types

 Real numbers of arbitrary precision cannot be represented

 Different types: float, double, long double

 double is more accurate than float
 1/3 is printed as 0.33333334326.. as a float, but 0.33333333333.. as a

double

d bl i d f i i iti l l l ti

9
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 double is used for precision critical calculations

 By default floating point constants are stored as a double.
 To force float constant should be suffixed with f, i.e., 7.5f or 7.5F.

 Format specifier "%lf", "%Lf" are used for using double and
long double using scanf/printf

Representation of Real Numbers

 Use the scientific notation: f * bk

 With this notation, we need to store f and k.

 We also need to decide the value of ‘b’.

 The most commonly used representation is:
 Use 1 bit for sign

10
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 Value of b is taken as 2

 Use 8 bits to store k (called exponent)

 Use 23 bits to store f (called mantissa), in normalized form with
integer part of the fraction to be exactly 1 (e.g. 1.0011)

 Exponent can be from -127 to +126

 So the range is from 2-127 to 2126, or 10-38 to 10+38 approx.

Errors in representing real numbers

 There are three types of errors:
 Underflow: Trying to store exponent less than -127

 Overflow: Trying to store exponent more than 126

 Rounding off: Storing the nearest floating point number

 Floating point arithmetic
 The hardware has to do a lot more for floating point arithmetic

11
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 The hardware has to do a lot more for floating point arithmetic
compared to integer arithmetic

 Do not store numbers as floating point, unless you really
need fractions

Range of different data types

Type Space assigned in Bytes Range

 Variables are stored in a predefined space
 A unit of storage is a Byte
 A Byte has space to store a sequence of 8 binary digits
 Different variable types have different storage space assigned
 Assignment of space is machine dependent

12
Krithika Venkataramani (krithika@cse.iitk.ac.in)

char 1 - 27 to (27-1)

unsigned char 1 0 to (28-1)

short int 2 - 215 to (215-1)

unsigned short int 2 0 to (216-1)

int 4 - 231 to (231-1)

unsigned int 4 0 to (232-1)

float 4 (approx) [10-38, 1038]

double 8 (approx) [10-308, 10308]

3/13/2012

4

Input and output of variables

 Correct type specification must be used
Type Format Specifier

char %c

int %d

unsigned int %u

float %f, %g, %e

13
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 scanf is for input
 Format: scanf(“<specification>”, &<name>);

 E.g. c is a char: scanf(“%c”, &c);

 printf is for output
 Format: printf(“<specification>”, <name>);

 E.g. c is a char: printf(``%c'', c);

, g,

double %lf

long double %Lf

Character type

 Variable type ‘char’ used for representing characters

 Characters are special integers of much shorter size
 Only 256 characters can be represented

 Digits 0-9 are not represented by 00000000 - 00001001

 0-9 represented by a continuous sequence

14
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 Similarly A-Z (a-z) also represented by a continuous
sequence

 ASCII character set is most widely used
 specifies a standard that maps characters to numbers 0-127

 Extended ASCII assigns symbols to numbers 128-255

 ASCII and Extended ASCII use 1 Byte for storage

 Unicode includes characters from all languages of the world
 Unicode uses 2 Bytes

The ASCII Table

15
Krithika Venkataramani (krithika@cse.iitk.ac.in)

Printing the Code of a Character

/*Program to print the code of a character*/

#include <stdio.h>

void main()

{

int code; //Declare variable to store the code

16
Krithika Venkataramani (krithika@cse.iitk.ac.in)

code = (int) getchar(); //Asking user to input the character

printf("%d", code); //printing the code of the character

}

3/13/2012

5

Additional data types
Data type Format specifier Size (machine

dependent)
Range

int %d(decimal), %i 4 bytes -231 -1 to 231 -1

unsigned int %u 4 bytes 0 to 232 -1

short int (unsigned) %hd (%hu) 2 bytes -215 -1 to 215 -1

long int (unsigned) %ld (%lu) 8 bytes -263 -1 to 263 -1

char %c %d 1 byte -128 to 127

17
Krithika Venkataramani (krithika@cse.iitk.ac.in)

char %c, %d 1 byte -128 to 127

unsigned char %u, %d 1 byte 0 to 255

string %s array of
characters

--

float %f, %g, %e 4 bytes 3.410-38 to 3.41038

double %lf, %lg, %le 8 bytes 1.710-308 to 1.710308

long double %Lf, %Lg, %Le 16 bytes ?

1 bit: 1 or 0 1 Byte: 8 bits
Note: for 32-bit machines long int and int are same

Additional formats for octal and hexadecimal

Data type Format
specifier

Display/ Read

unsigned int %o unsigned octal integer

unsigned int %x, %X unsigned hexadecimal integer

18
Krithika Venkataramani (krithika@cse.iitk.ac.in)

g g g

unsigned long int %lo unsigned octal integer

unsigned long int %lx, %lX unsigned hexadecimal integer

unsigned short int %ho unsigned octal integer

unsigned short int %hx, %hX unsigned hexadecimal integer

