
4/16/2012

1

ESc101: (Linear, Circular, Doubly) Linked Lists,
Stacks, Queues, Trees

Instructor: Krithika Venkataramani

Semester 2 2011-2012

1
Krithika Venkataramani (krithika@cse.iitk.ac.in)

Semester 2, 2011-2012

Introduction to Linked Lists

 Each bead connected to the
next through a link

 Can change the order of the  Can change the order of the
beads by changing the
link/connection

 Bead ~ Data

 Linked beads ~ Linked list
of data

2
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 Changing links is useful in
sorting

 Need not use additional
temporary spaces as in
array sorting

4/16/2012

2

Uses and Operations on Linked Lists

 Linear linked list: last element is not connected to anything

 Circular linked list: last element is connected to the first

D i Si f li k d li t h i k d i th  Dynamic: Size of a linked list grows or shrinks during the
execution of a program and is just right

 Advantage: It provides flexibility in inserting and deleting
elements by just re-arranging the links

 Disadvantage: Accessing a particular element is not easy

 There are three major operations on linked lists

3
Krithika Venkataramani (krithika@cse.iitk.ac.in)

j p

1 Insertion

2 Deletion

3 Searching

Structure for an element of the linked list

 A linked list contains a list of data

 The Data can be anything: number, character, array,
structure etc structure, etc.

 Each element of the list must also link with the next element

 Therefore, a structure containing data and link is created

 The link is a pointer to the same type of structure

struct Node

{

4
Krithika Venkataramani (krithika@cse.iitk.ac.in)

{

int data ;

struct Node *next ;

};

 This is called a self-referential pointer

4/16/2012

3

Linked list: chain of nodes

 A linked list is simply a linear chain of such nodes

 The beginning of the list is maintained as a pointer to the first
element (generally called head)element (generally called head)

 Space for an element is created using a pointer (say q)
 q = (struct Node *) malloc (size of (struct Node));

 q->data is the desired value

 q->next is NULL

 A list element’s members are accessed using the pointer (q)
t th li t l t

5
Krithika Venkataramani (krithika@cse.iitk.ac.in)

to the list element
 data using q->data

 next element pointer using q->next

 Moving to next element is done using pointers
 q = qnext;

Recap of Linear Linked Lists

 Each element: data + link (pointer to next element)

 Element is also called a “node”

H d dd f fi t l t Head: address of first element

 Last element pointer: NULL

 All operations done using pointers
 Allocation of space of element

 Assigning and accessing data values

 Moving to next elementhead

6
Krithika Venkataramani (krithika@cse.iitk.ac.in)

data next data next data next NULL

4/16/2012

4

Linked List: element definition and creation

#include <stdio.h>

#include <stdlib.h>

typedef struct Node

{{

int data; // data of a node: list is made of these elements

struct Node *next; // link to the next node

} node;

node *create_node(int val)

{

node *n;

7
Krithika Venkataramani (krithika@cse.iitk.ac.in)

node n;

n = malloc(sizeof(node));

n->data = val;

n->next = NULL;

return n;

}

Sample Linked List creation

100

 node: int + pointer

node *p1, *head, *p2, *end, *p3;

1 t d (15)

0

..

p1 10

25

NULL

…..

200

204

100

130

15

p1 = create_node(15);

head = p1;

p2 = create_node(20);

/*insert at end*/

head->next = p2;

end = head >next;

head 18

p2 26

end 34

p3 42

…

100

130

200

200

8
Krithika Venkataramani (krithika@cse.iitk.ac.in)

NULL

20

NULL

end = head->next;

p3 = create_node(25);

end->next = p3;

end = end->next;

104

130

130

200

4/16/2012

5

Insertion at the beginning of the list

 Create a new node (say q)

 Make q->next point to head

M k h d l t  Make head equal to q

 If list is empty, i.e., head is NULL
 Make head equal to q

9
Krithika Venkataramani (krithika@cse.iitk.ac.in)

Insertion at end of list

 Create a new node (say q)

 Find the last element (say p)

M k t i t t  Make p->next point to q

 If list is empty, i.e., head is NULL
 Make head equal to q

10
Krithika Venkataramani (krithika@cse.iitk.ac.in)

4/16/2012

6

Deletion at the beginning of the list

 Make p equal to head

 Make head equal to head->next

D l t (b i f) Delete p (by using free)

 If list is empty, i.e., head is NULL
 Nothing to do

 If list contains only one element
 Delete head

 head is now NULL

11
Krithika Venkataramani (krithika@cse.iitk.ac.in)

Deletion from the end of the list

 Find the last element (say p)

 While finding p, maintain q that points to p
 i th d j t b f i > t i  q is the node just before p, i.e., q->next is p

 Make q->next NULL

 Delete p (by using free)

 If list is empty, i.e., head is NULL
 Nothing to do

 If list contains only one element

12
Krithika Venkataramani (krithika@cse.iitk.ac.in)

y
 Delete head

 head is now NULL

4/16/2012

7

Searching a node (insert after, delete after)

 Make p equal to head

 While p->data not equal to the data that is being searched,
make p equal to p->next

 Using search, insert after and delete after operations can be
implemented

 Insert after p
 Create a new node q

 Make q->next equal to p->next

 Make p->next equal to q

13
Krithika Venkataramani (krithika@cse.iitk.ac.in)

p q q

 Delete after p
 Call the next node, i.e., p->next as q

 Make p->next equal to q->next

 Delete q

Linked List: element definition and creation

#include <stdio.h>

#include <stdlib.h>

typedef struct Node

{{

int data; // data of a node: list is made of these elements

struct Node *next; // link to the next node

} node;

node *create_node(int val)

{

node *n;

14
Krithika Venkataramani (krithika@cse.iitk.ac.in)

node n;

n = malloc(sizeof(node));

n->data = val;

n->next = NULL;

return n;

}

4/16/2012

8

Displaying the data in the linked list

void print_list(node *h)

{ /*Display data in each element of the linked list*/

node *p;node p;

p = h;

while (p != NULL)

{

printf("%d --> ", p->data);

p = p->next;

}

15
Krithika Venkataramani (krithika@cse.iitk.ac.in)

}

Inserting at end

int main()

{

node *head = NULL; // head maintains the entry to the list

d * NULL * NULLnode *p = NULL, *q = NULL;

int v = -1, a;

printf("Inserting at end: Enter the data value:\n");

scanf("%d", &v);

while (v != -1)

{

q = create node(v);

16
Krithika Venkataramani (krithika@cse.iitk.ac.in)

q = create_node(v);

if (head == NULL)

head = q;

4/16/2012

9

Inserting at end (cont.)

else /*non empty list*/

{

p = head;p = head;

while (p->next != NULL)

p = p->next;

p->next = q;

}

scanf("%d", &v);

}

17
Krithika Venkataramani (krithika@cse.iitk.ac.in)

}

print_list(head); /*Display the data in the list*/

Inserting at the beginning

printf("Inserting at beginning\n");

scanf("%d", &v);

while (v != -1)while (v ! 1)

{

q = create_node(v);

q->next = head;

head = q;

scanf("%d", &v);

}

18
Krithika Venkataramani (krithika@cse.iitk.ac.in)

print_list(head); /*Display the data in the list*/

4/16/2012

10

Inserting after an elementprintf("Inserting after\n");

scanf("%d", &v);

while (v != -1)

{

q = create_node(v);

f("%d" &)scanf("%d", &a);

p = head;

while ((p != NULL) && (p->data != a))

p = p->next;

if (p != NULL)

{

q->next = p->next;

19
Krithika Venkataramani (krithika@cse.iitk.ac.in)

q->next = p->next;

p->next = q;

}

scanf("%d", &v);

}

print_list(head); /*Display the data in the list*/

Deleting from the end

printf("Deleting from end\n");

if (head != NULL)

{{

p = head;

while (p->next != NULL)

{

q = p;

p = p->next;

}

20
Krithika Venkataramani (krithika@cse.iitk.ac.in)

q->next = NULL;

free(p);

}

print_list(head); /*Display the data in the list*/

4/16/2012

11

Deleting from the beginning

printf("Deleting from beginning\n");

if (head != NULL)if (head ! NULL)

{

p = head;

head = head->next;

free(p);

}

/*Empty list: i.e. head==NULL, do nothing*/

21
Krithika Venkataramani (krithika@cse.iitk.ac.in)

print_list(head); /*Display the data in the list*/

Deleting after an element
printf("Deleting after\n");

scanf("%d", &a);

p = head;

while ((p != NULL) && (p->data != a))

 > tp = p->next;

if (p != NULL)

{

q = p->next;

if (q != NULL)

{

p->next = q->next;

22
Krithika Venkataramani (krithika@cse.iitk.ac.in)

p->next = q->next;

free(q);

}

}

print_list(head); /*Display the data in the list*/

}

4/16/2012

12

Stacks and Queues

 The linked list only allows for sequential traversal

 Sequential traversal is present in stacks and queues

Li k d li t d t i l t th Linked lists are used to implement these

23
Krithika Venkataramani (krithika@cse.iitk.ac.in)

Stack Queue

Stacks

 Insert at top of stack and remove from top of stack

 Stack operations also called Last-In First-Out (LIFO)

St k O ti P h d P Stack Operations: Push and Pop

 Push: insert at the top/beginning of stack

 Pop: delete from the top/beginning of stack

24
Krithika Venkataramani (krithika@cse.iitk.ac.in)

4/16/2012

13

Conversion of Decimal number to Binary

 Convert decimal number 39 to binary

 39/2 = 19 +1

19/2 9 1 19/2 = 9 +1

 9/2 = 4 +1

 4/2 = 2 +0

 2/2 = 1 +0

 1/2 = 0 +1

 Read remainder from bottom to top

25
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 Read remainder from bottom to top

 Binary representation: 100111

 Stack can be used to read remainders in correct order

Stack Push Operations: Decimal to Binary

2 6

3 0 200 0 [rem(6/2)]
2 3

1 1
250 1 [rem(3/2)]

254 200

1000 Head = 200
1000 Head = 250

Address Values

204 NULL
254 200

200 0 [rem(6/2)]

204 NULL

2 1

0 1

270 1 [rem(1/2)]

274 250

head = NULL;
push(&head,0); push(&head,1);

1000 Head = 270

26
Krithika Venkataramani (krithika@cse.iitk.ac.in)

250 1 [rem(3/2)]

254 200

200 0 [rem(6/2)]

204 NULL

push(&head,1);

4/16/2012

14

Stack Push

 stack top/head has the address of the first element

 Function needs the address to the stack top/head to make
changes to headchanges to head

void push(node **head_address, int top)

{

node *q;

q = create_node(top); /*New element storing the new data*/

q->next = *head address; /*New element pointing to head*/

27
Krithika Venkataramani (krithika@cse.iitk.ac.in)

q >next head_address; / New element pointing to head /

*head_address = q; /*head pointing to new element*/

return;

}

Stack pop operations: Decimal to Binary
Head = 270

270 1 [rem(1/2)]

274 250

rem=
pop(&head);

i tf(“%d”
250 1 [rem(3/2)]

Head = 250

250 1 [rem(3/2)]

254 200

200 0 [rem(6/2)]

204 NULL

printf(“%d”,
rem);

254 200

200 0 [rem(6/2)]

204 NULL
1

28
Krithika Venkataramani (krithika@cse.iitk.ac.in)

rem=
pop(&head);
printf(“%d”,
rem);

11

200 0 [rem(6/2)]

204 NULL

Head = 200

rem=
pop(&head);
printf(“%d”,
rem);

110

Head = NULL

4/16/2012

15

Stack Popint pop(node **head_address)

{

node *p, *head;

int top;

head = *head_address; /*head has address of the first element*/

if (head != NULL)if (head != NULL)

{

p = head; //p: address of stack top element in stack

top = p->data; //data in stack top/first element

head = head->next; //head now has address of 2nd element in stack

free(p); //remove the first element in stack

}

29
Krithika Venkataramani (krithika@cse.iitk.ac.in)

}

else

top = -1; //-1 denotes invalid value or empty list

*head_address = head; /*reflect the changes to head outside*/

return top;

}

Stack operations: Decimal to Binary

void main()

{

node *head = NULL; // head: address of stack top or stack reference node head NULL; // head: address of stack top or stack reference

int decimal, rem, binary[20], j=0;

printf("Enter the (positive) decimal value:");

scanf("%d",&decimal);

/*Push: store binary digits in correct order*/

while(decimal>0)

{

30
Krithika Venkataramani (krithika@cse.iitk.ac.in)

rem = decimal%2;

push(&head,rem);

decimal = decimal/2;

}

4/16/2012

16

Stack operations: Decimal to Binary (cont.)

/*Pop : to read binary digits in correct order*/

printf("Binary representation: ");

while(head!=NULL)while(head! NULL)

{

rem = pop(&head);

printf("%d",rem);

binary[j]=rem;

j++;

}

31
Krithika Venkataramani (krithika@cse.iitk.ac.in)

printf("\n");

binary[j]= -1; //to denote end of binary representation

}

Queues

 Queue operations are also called First-in first-out

 Operations
 E i t t th d f  Enqueue: insert at the end of queue

 Dequeue: delete from the beginning of queue

 Code: similar to previous code on linked lists

 Queue Application: Executing processes by operating system
 Operating System puts new processes at the end of a queue

 System executes processes at the beginning of the queue

32
Krithika Venkataramani (krithika@cse.iitk.ac.in)

4/16/2012

17

Circular Lists

 The last element of a linked list points to the first element.

 A reference pointer is required to access the list: head

data t data t data next

head

33
Krithika Venkataramani (krithika@cse.iitk.ac.in)

data next data next data next

Circular Lists

 The list pointer can have the address of the last element.

 The tail/last element can be accessed by the list pointer

Th h d/fi t l t b d f th t il/l t  The head/first element can be accessed from the tail/last
element (by list->next)

 Provides flexibility in accessing first and last elements

 Circular lists can be used for queues.

 Useful in enqueue/dequeue operations without needing to
traverse the list list

34
Krithika Venkataramani (krithika@cse.iitk.ac.in)

data next data next data next

4/16/2012

18

Queue using a circular list

 Enqueue: insertion at the end of the list
 The list pointer to the last element is known

 Insert new element using this  Insert new element using this

 Dequeue: deletion at the beginning of the list
 Traversing one element from the list pointer (to the last element) gives

the first element

 Traversal of the entire list need not be done

 The list needs to be checked if it is empty

35
Krithika Venkataramani (krithika@cse.iitk.ac.in)

Create an element in the queue

struct Node //list element

{

char *name; // data of an element in the list

t t N d * t // f t th t l tstruct Node *next; // reference to the next element

};

struct Node *create_node(char *Name) //create a list element

{

struct Node *n;

n = malloc(sizeof(struct Node)); //create space for the element

n->name = (char *)malloc((strlen(Name)+1)*sizeof(char)); /*create space for

36
Krithika Venkataramani (krithika@cse.iitk.ac.in)

n->name = (char)malloc((strlen(Name)+1) sizeof(char)); / create space for
name*/

strcpy(n->name,Name);

n->next = NULL;

return n;

}

4/16/2012

19

Print list of elements in queue
void print_list(struct Node *h)
{

struct Node *p;
p = h;

if (p==NULL) //no element in list
{

printf("\nNo elements in the queue");
return;

}
printf("Queue elements");

p = p->next; //first element in the list
while (p!=h) //while last element has not been reached

{

37
Krithika Venkataramani (krithika@cse.iitk.ac.in)

{
printf("\n%s", p->name);
p = p->next;

}
printf("\n%s", p->name); //print last element

}

Enqueue: Add to the end of the queue
struct Node* enqueue(struct Node *list, char *Name)

{

struct Node *n;

n = create_node(Name); // create new element

if (list==NULL) // if no element in the queue

{

list = n;

list->next = list;

}

else //list points to the last element in queue

{

38
Krithika Venkataramani (krithika@cse.iitk.ac.in)

n->next = list->next; //give reference to first element from new element

list->next = n; // add the new element to the end of queue

list = n; //provide reference to the end of the queue

}

return(list);

}

4/16/2012

20

Dequeue: Remove element from queue end
struct Node* dequeue(struct Node *list)
{
struct Node *temp;
if (list==NULL) //error check()

printf("\nError: No elements in queue to dequeue");
else if (list->next==list) //only one node
{

free(list); //return memory to system
list = NULL;

}
else
{

39
Krithika Venkataramani (krithika@cse.iitk.ac.in)

{
temp = list->next; //first node
list->next = list->next->next; //remove the link to the first node
free(temp); //return memory of the deleted first node to the system

}
return(list);

}

Calling different queue operations
void main()
{

struct Node *list = NULL; // address of the last element in the circular list
h d N [50] char command, Name[50];

scanf(" %c", &command); //read queue operation
while ((command!='S') && (command!='s')) //Stop operations: S
{

if ((command=='E') || (command=='e')) //Enqueue: E <name>
{

scanf(" %s", Name);
list = enqueue(list, Name);

40
Krithika Venkataramani (krithika@cse.iitk.ac.in)

q (,);
}
else if ((command=='D') || (command=='d')) //Dequeue: D

list = dequeue(list);
else if ((command=='L') || (command=='l')) //Print queue: L

print_list(list);

4/16/2012

21

Calling different queue operations (cont.)

else //error check

printf("Incorrect operation");

printf("\nEnter another queue operation: ");printf(\nEnter another queue operation:);

scanf(" %c", &command);

}

}

41
Krithika Venkataramani (krithika@cse.iitk.ac.in)

Josephus problem

 A set of players are present in a circle

 Counting from a given player, every ‘nth’ player is considered
‘out’ and eliminated from the gameout and eliminated from the game

 Counting starts again from the next person after the removed
player, and the next ‘nth’ player is removed.

 The game continues until only one player remains, who is the
winner

42
Krithika Venkataramani (krithika@cse.iitk.ac.in)

4/16/2012

22

Algorithm for Josephus Problem

1. Obtain the initial player list

2. Go to starting player. Start count of 1.

3. Increment count, go to next player. If player-list end is reached, go to list 3. Increment count, go to next player. If player list end is reached, go to list
beginning.

4. If count < n, go back to step 3

5. If count = n, remove player from list. Set count = 1 from next player. Go
back to Step 3.

6. If next player is same as current player, declare winner.

 Implementation

43
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 2D Arrays to hold player names

 Circular lists

 Circular lists are an easier implementation for Step 3
 Step 5: easier with doubly linked circular lists

 workaround: eliminate nth player when count = n-1

Josephus Problem with n = 3, starting from ‘1’

1

Start
counting
f thi 1

2

3
5

6

from this
person

list

Pointer to
the circular
list at the
beginning of

44
Krithika Venkataramani (krithika@cse.iitk.ac.in)

4 3: ‘Out of game’: To be deleted

g g
the game

List pointer: to the end of list

4/16/2012

23

Josephus Problem with n = 3, starting from ‘1’ (cont.)

1
6: ‘Out of game: to be deleted

1

2

3
5

6
list

45
Krithika Venkataramani (krithika@cse.iitk.ac.in)

4
Start
counting
from this
person

Josephus Problem with n = 3, starting from ‘1’ (cont.)

1

Start
counting
from this 1

2

3
5

6

person

list

46
Krithika Venkataramani (krithika@cse.iitk.ac.in)

4

list

4: ‘Out of game’: To be deleted

4/16/2012

24

Josephus Problem with n = 3, starting from ‘1’ (cont.)

11

2

3
5

6

Start
counting

list

2: ‘Out of game’: To be deleted

47
Krithika Venkataramani (krithika@cse.iitk.ac.in)

4

counting
from this
person

Josephus Problem with n = 3, starting from ‘1’ (cont.)

1
list

1: is the winner1

2

3
5

6

Start
counting

1: is the winner

48
Krithika Venkataramani (krithika@cse.iitk.ac.in)

4

counting
from this
person

5: ‘Out of game’: To be deleted

4/16/2012

25

Create an element in the list

struct Node //list element

{

char *name; // data of an element in the list

t t N d * t // f t th t l tstruct Node *next; // reference to the next element

};

struct Node *create_node(char *Name) //create a list element

{

struct Node *n;

n = malloc(sizeof(struct Node)); //create space for the element

n->name = (char *)malloc((strlen(Name)+1)*sizeof(char)); /*create space for

49
Krithika Venkataramani (krithika@cse.iitk.ac.in)

n->name = (char)malloc((strlen(Name)+1) sizeof(char)); / create space for
name*/

strcpy(n->name,Name);

n->next = NULL;

return n;

}

Enqueue: Add to the end of the list
struct Node* enqueue(struct Node *list, char *Name)

{

struct Node *n;

n = create_node(Name); // create new element

if (list==NULL) // if no element in the queue

{

list = n;

list->next = list;

}

else //list points to the last element in queue

{

50
Krithika Venkataramani (krithika@cse.iitk.ac.in)

n->next = list->next; //give reference to first element from new element

list->next = n; // add the new element to the end of queue

list = n; //provide reference to the end of the queue

}

return(list);

}

4/16/2012

26

Dequeue: Remove element from queue beginning
struct Node* dequeue(struct Node *list)
{
struct Node *temp;
if (list==NULL) //error check()

printf("\nError: No elements in queue to dequeue");
else if (list->next==list) //only one node
{

free(list); //return memory to system
list = NULL;

}
else
{

51
Krithika Venkataramani (krithika@cse.iitk.ac.in)

{
temp = list->next; //first node
list->next = list->next->next; //remove the link to the first node
free(temp); //return memory of the deleted first node to the system

}
return(list);

}

void josephus()
{

char Name[50], *end = "end";

Josephus problem code

struct Node *list = NULL; // 'Node’ data has player name. 'list' points to
end of the list

int n, i;
printf("\nEnter list of player names\n");
scanf(" %s", Name);
while (strcmp(Name,end)!=0) /*create the list of players, reading names

until "end"*/
{

52
Krithika Venkataramani (krithika@cse.iitk.ac.in)

{
list = enqueue(list, Name); /*same enqueue function as before to

create list*/
scanf(" %s", Name);

}
printf("Enter the count of the next player eliminated: ");
scanf("%d",&n); //nth player eliminated

4/16/2012

27

Eliminating players

printf("Order of players eliminated from game");

/* Play the game by starting count from list beginning*/

while (list !=list->next) // while more than one player is left, continue while (list ! list next) // while more than one player is left, continue
game

{

for (i=1; i < n; i++)

list = list->next;

printf("\n%s",list->next->name); // name of the player eliminated
from the game

li t d (li t) // d f ti b f

53
Krithika Venkataramani (krithika@cse.iitk.ac.in)

list = dequeue(list); //same dequeue function as before

}

printf("The winner of the game is: %s", list->name);

}

Doubly linked lists

 Linked list disadvantages
 Cannot traverse the list backwards

 Cannot delete an element using only a pointer to that element Cannot delete an element using only a pointer to that element

 Doubly linked lists: pointers to next element as well as
previous element
 Use previous element pointer for given node deletion

 Pointers to both ends of the lists are stored
 head: beginning of list

 tail: end of list
Tail

54
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 tail: end of list

Data 15

Previous
NULL

Next
250

address: 200

Data 20

Previous
200

Next
300

address: 250

Data 25

Previous
250

Next
NULL

address: 300

Head

4/16/2012

28

Doubly linked lists: applications

 Queue implementation with doubly linked lists
 Enqueue: insertion at Queue end (using tail)

 Dequeue: deletion at Queue begin (using head)  Dequeue: deletion at Queue begin (using head)

 Addition of long integers through doubly linked lists
 Traverse from list end while adding

 Traverse from list beginning to display

55
Krithika Venkataramani (krithika@cse.iitk.ac.in)

Doubly Linked List: element definition

typedef struct Node { /*Element definition*/

int data;

struct node *previous;struct node previous;

struct node *next;

} node;

node *head = NULL;

node *tail = NULL;

node *s; /*Creating first node*/

s = (node *) malloc (sizeof (node));

56
Krithika Venkataramani (krithika@cse.iitk.ac.in)

s->data = 15;

s->previous = NULL;

s->next = NULL;

head = s;

tail = s;

4/16/2012

29

Removing an element

printf("Deleting a given element\n");

scanf("%d", &a); /*enter the data to be deleted*/

p = head;p

while ((p != NULL) && (p->data != a)) /*searching the data to be deleted*/

p = p->next;

if (p != NULL) /*p is the node to be deleted*/

{

if (p->previous == NULL) /*if p is head*/

{

57
Krithika Venkataramani (krithika@cse.iitk.ac.in)

head = head->next; /*move head to next element*/

head->previous = NULL:

}

Removing an element (cont.)

else if (p->next == NULL) /*if p is tail*/

{

tail = tail->previous; /*move tail to previous element*/tail tail previous; / move tail to previous element /

tail->next = NULL;

}

else /*p is in the middle of the list*/

{

(p->previous)->next = p->next;

(p->next)->previous = p->previous;

58
Krithika Venkataramani (krithika@cse.iitk.ac.in)

}

free(p); //deleting the node p

} /*end of if statement*/

print_list(head);

4/16/2012

30

Inserting after a given element
 Will not change head

 May change tail, if the given element (n) is the last element
q = create_node(v); //new node q

scanf("%d", &a); //enter data value, a, to be searched for(,); , ,

p = head;

while ((p != NULL) && (p->data != a)) //a is being searched for

p = p->next;

if (p != NULL) //new node q is inserted after p

{

q->previous = p;

q->next = p->next;

59
Krithika Venkataramani (krithika@cse.iitk.ac.in)

q p ;

if (p->next==NULL) //if p is tail

tail = q; //q becomes new tail

else

(p->next)->previous = q;

p->next = q;

}

Binary Trees

 Searching is more efficient in a binary tree than from an array
 Binary search can be easily understood using binary trees

 Searching starts from the top/root of the binary search trees Searching starts from the top/root of the binary search trees

 Search stops if the number, n, is found in the node

 If n < the number stored in the node, searching is done from
the left child

 If n > the number stored in the node, searching is done from
the right child

60
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 The procedure is continued till the number is found.

4/16/2012

31

Binary Tree Creation

 A binary tree can be created from an array

 One approach:

 Use the first element as the root node, R. Use the first element as the root node, R.

 If the 2nd element is less (greater) than the root, insert it as a left
(right) child, C

 If the 3rd element is less(greater) than the root, traverse to the left
(right) child, C, of root node

 If the 3rd element is less (greater) than this child node, insert it as a left
(right) child to C.

 Repeat this process for every element in the array

61
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 Repeat this process for every element in the array

 If the array is sorted, this approach will lead to an ‘unbalanced’ tree

Binary Tree Creation

1 5 3 2 4
1

L R

Root

Array
L R

5

L R

3

R

Null

Null

62
Krithika Venkataramani (krithika@cse.iitk.ac.in)

L R

2

L R

4

L R

Null Null Null Null

4/16/2012

32

The content of some of these slides are from the
lecture slides of Prof. Arnab Bhattacharya and Prof.
Dheeraj Sanghi

63
Krithika Venkataramani (krithika@cse.iitk.ac.in)

