
4/16/2012

1

ESc101: (Linear, Circular, Doubly) Linked Lists,
Stacks, Queues, Trees

Instructor: Krithika Venkataramani

Semester 2 2011-2012

1
Krithika Venkataramani (krithika@cse.iitk.ac.in)

Semester 2, 2011-2012

Introduction to Linked Lists

 Each bead connected to the
next through a link

 Can change the order of the Can change the order of the
beads by changing the
link/connection

 Bead ~ Data

 Linked beads ~ Linked list
of data

2
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 Changing links is useful in
sorting

 Need not use additional
temporary spaces as in
array sorting

4/16/2012

2

Uses and Operations on Linked Lists

 Linear linked list: last element is not connected to anything

 Circular linked list: last element is connected to the first

D i Si f li k d li t h i k d i th Dynamic: Size of a linked list grows or shrinks during the
execution of a program and is just right

 Advantage: It provides flexibility in inserting and deleting
elements by just re-arranging the links

 Disadvantage: Accessing a particular element is not easy

 There are three major operations on linked lists

3
Krithika Venkataramani (krithika@cse.iitk.ac.in)

j p

1 Insertion

2 Deletion

3 Searching

Structure for an element of the linked list

 A linked list contains a list of data

 The Data can be anything: number, character, array,
structure etc structure, etc.

 Each element of the list must also link with the next element

 Therefore, a structure containing data and link is created

 The link is a pointer to the same type of structure

struct Node

{

4
Krithika Venkataramani (krithika@cse.iitk.ac.in)

{

int data ;

struct Node *next ;

};

 This is called a self-referential pointer

4/16/2012

3

Linked list: chain of nodes

 A linked list is simply a linear chain of such nodes

 The beginning of the list is maintained as a pointer to the first
element (generally called head)element (generally called head)

 Space for an element is created using a pointer (say q)
 q = (struct Node *) malloc (size of (struct Node));

 q->data is the desired value

 q->next is NULL

 A list element’s members are accessed using the pointer (q)
t th li t l t

5
Krithika Venkataramani (krithika@cse.iitk.ac.in)

to the list element
 data using q->data

 next element pointer using q->next

 Moving to next element is done using pointers
 q = qnext;

Recap of Linear Linked Lists

 Each element: data + link (pointer to next element)

 Element is also called a “node”

H d dd f fi t l t Head: address of first element

 Last element pointer: NULL

 All operations done using pointers
 Allocation of space of element

 Assigning and accessing data values

 Moving to next elementhead

6
Krithika Venkataramani (krithika@cse.iitk.ac.in)

data next data next data next NULL

4/16/2012

4

Linked List: element definition and creation

#include <stdio.h>

#include <stdlib.h>

typedef struct Node

{{

int data; // data of a node: list is made of these elements

struct Node *next; // link to the next node

} node;

node *create_node(int val)

{

node *n;

7
Krithika Venkataramani (krithika@cse.iitk.ac.in)

node n;

n = malloc(sizeof(node));

n->data = val;

n->next = NULL;

return n;

}

Sample Linked List creation

100

 node: int + pointer

node *p1, *head, *p2, *end, *p3;

1 t d (15)

0

..

p1 10

25

NULL

…..

200

204

100

130

15

p1 = create_node(15);

head = p1;

p2 = create_node(20);

/*insert at end*/

head->next = p2;

end = head >next;

head 18

p2 26

end 34

p3 42

…

100

130

200

200

8
Krithika Venkataramani (krithika@cse.iitk.ac.in)

NULL

20

NULL

end = head->next;

p3 = create_node(25);

end->next = p3;

end = end->next;

104

130

130

200

4/16/2012

5

Insertion at the beginning of the list

 Create a new node (say q)

 Make q->next point to head

M k h d l t Make head equal to q

 If list is empty, i.e., head is NULL
 Make head equal to q

9
Krithika Venkataramani (krithika@cse.iitk.ac.in)

Insertion at end of list

 Create a new node (say q)

 Find the last element (say p)

M k t i t t Make p->next point to q

 If list is empty, i.e., head is NULL
 Make head equal to q

10
Krithika Venkataramani (krithika@cse.iitk.ac.in)

4/16/2012

6

Deletion at the beginning of the list

 Make p equal to head

 Make head equal to head->next

D l t (b i f) Delete p (by using free)

 If list is empty, i.e., head is NULL
 Nothing to do

 If list contains only one element
 Delete head

 head is now NULL

11
Krithika Venkataramani (krithika@cse.iitk.ac.in)

Deletion from the end of the list

 Find the last element (say p)

 While finding p, maintain q that points to p
 i th d j t b f i > t i q is the node just before p, i.e., q->next is p

 Make q->next NULL

 Delete p (by using free)

 If list is empty, i.e., head is NULL
 Nothing to do

 If list contains only one element

12
Krithika Venkataramani (krithika@cse.iitk.ac.in)

y
 Delete head

 head is now NULL

4/16/2012

7

Searching a node (insert after, delete after)

 Make p equal to head

 While p->data not equal to the data that is being searched,
make p equal to p->next

 Using search, insert after and delete after operations can be
implemented

 Insert after p
 Create a new node q

 Make q->next equal to p->next

 Make p->next equal to q

13
Krithika Venkataramani (krithika@cse.iitk.ac.in)

p q q

 Delete after p
 Call the next node, i.e., p->next as q

 Make p->next equal to q->next

 Delete q

Linked List: element definition and creation

#include <stdio.h>

#include <stdlib.h>

typedef struct Node

{{

int data; // data of a node: list is made of these elements

struct Node *next; // link to the next node

} node;

node *create_node(int val)

{

node *n;

14
Krithika Venkataramani (krithika@cse.iitk.ac.in)

node n;

n = malloc(sizeof(node));

n->data = val;

n->next = NULL;

return n;

}

4/16/2012

8

Displaying the data in the linked list

void print_list(node *h)

{ /*Display data in each element of the linked list*/

node *p;node p;

p = h;

while (p != NULL)

{

printf("%d --> ", p->data);

p = p->next;

}

15
Krithika Venkataramani (krithika@cse.iitk.ac.in)

}

Inserting at end

int main()

{

node *head = NULL; // head maintains the entry to the list

d * NULL * NULLnode *p = NULL, *q = NULL;

int v = -1, a;

printf("Inserting at end: Enter the data value:\n");

scanf("%d", &v);

while (v != -1)

{

q = create node(v);

16
Krithika Venkataramani (krithika@cse.iitk.ac.in)

q = create_node(v);

if (head == NULL)

head = q;

4/16/2012

9

Inserting at end (cont.)

else /*non empty list*/

{

p = head;p = head;

while (p->next != NULL)

p = p->next;

p->next = q;

}

scanf("%d", &v);

}

17
Krithika Venkataramani (krithika@cse.iitk.ac.in)

}

print_list(head); /*Display the data in the list*/

Inserting at the beginning

printf("Inserting at beginning\n");

scanf("%d", &v);

while (v != -1)while (v ! 1)

{

q = create_node(v);

q->next = head;

head = q;

scanf("%d", &v);

}

18
Krithika Venkataramani (krithika@cse.iitk.ac.in)

print_list(head); /*Display the data in the list*/

4/16/2012

10

Inserting after an elementprintf("Inserting after\n");

scanf("%d", &v);

while (v != -1)

{

q = create_node(v);

f("%d" &)scanf("%d", &a);

p = head;

while ((p != NULL) && (p->data != a))

p = p->next;

if (p != NULL)

{

q->next = p->next;

19
Krithika Venkataramani (krithika@cse.iitk.ac.in)

q->next = p->next;

p->next = q;

}

scanf("%d", &v);

}

print_list(head); /*Display the data in the list*/

Deleting from the end

printf("Deleting from end\n");

if (head != NULL)

{{

p = head;

while (p->next != NULL)

{

q = p;

p = p->next;

}

20
Krithika Venkataramani (krithika@cse.iitk.ac.in)

q->next = NULL;

free(p);

}

print_list(head); /*Display the data in the list*/

4/16/2012

11

Deleting from the beginning

printf("Deleting from beginning\n");

if (head != NULL)if (head ! NULL)

{

p = head;

head = head->next;

free(p);

}

/*Empty list: i.e. head==NULL, do nothing*/

21
Krithika Venkataramani (krithika@cse.iitk.ac.in)

print_list(head); /*Display the data in the list*/

Deleting after an element
printf("Deleting after\n");

scanf("%d", &a);

p = head;

while ((p != NULL) && (p->data != a))

 > tp = p->next;

if (p != NULL)

{

q = p->next;

if (q != NULL)

{

p->next = q->next;

22
Krithika Venkataramani (krithika@cse.iitk.ac.in)

p->next = q->next;

free(q);

}

}

print_list(head); /*Display the data in the list*/

}

4/16/2012

12

Stacks and Queues

 The linked list only allows for sequential traversal

 Sequential traversal is present in stacks and queues

Li k d li t d t i l t th Linked lists are used to implement these

23
Krithika Venkataramani (krithika@cse.iitk.ac.in)

Stack Queue

Stacks

 Insert at top of stack and remove from top of stack

 Stack operations also called Last-In First-Out (LIFO)

St k O ti P h d P Stack Operations: Push and Pop

 Push: insert at the top/beginning of stack

 Pop: delete from the top/beginning of stack

24
Krithika Venkataramani (krithika@cse.iitk.ac.in)

4/16/2012

13

Conversion of Decimal number to Binary

 Convert decimal number 39 to binary

 39/2 = 19 +1

19/2 9 1 19/2 = 9 +1

 9/2 = 4 +1

 4/2 = 2 +0

 2/2 = 1 +0

 1/2 = 0 +1

 Read remainder from bottom to top

25
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 Read remainder from bottom to top

 Binary representation: 100111

 Stack can be used to read remainders in correct order

Stack Push Operations: Decimal to Binary

2 6

3 0 200 0 [rem(6/2)]
2 3

1 1
250 1 [rem(3/2)]

254 200

1000 Head = 200
1000 Head = 250

Address Values

204 NULL
254 200

200 0 [rem(6/2)]

204 NULL

2 1

0 1

270 1 [rem(1/2)]

274 250

head = NULL;
push(&head,0); push(&head,1);

1000 Head = 270

26
Krithika Venkataramani (krithika@cse.iitk.ac.in)

250 1 [rem(3/2)]

254 200

200 0 [rem(6/2)]

204 NULL

push(&head,1);

4/16/2012

14

Stack Push

 stack top/head has the address of the first element

 Function needs the address to the stack top/head to make
changes to headchanges to head

void push(node **head_address, int top)

{

node *q;

q = create_node(top); /*New element storing the new data*/

q->next = *head address; /*New element pointing to head*/

27
Krithika Venkataramani (krithika@cse.iitk.ac.in)

q >next head_address; / New element pointing to head /

*head_address = q; /*head pointing to new element*/

return;

}

Stack pop operations: Decimal to Binary
Head = 270

270 1 [rem(1/2)]

274 250

rem=
pop(&head);

i tf(“%d”
250 1 [rem(3/2)]

Head = 250

250 1 [rem(3/2)]

254 200

200 0 [rem(6/2)]

204 NULL

printf(“%d”,
rem);

254 200

200 0 [rem(6/2)]

204 NULL
1

28
Krithika Venkataramani (krithika@cse.iitk.ac.in)

rem=
pop(&head);
printf(“%d”,
rem);

11

200 0 [rem(6/2)]

204 NULL

Head = 200

rem=
pop(&head);
printf(“%d”,
rem);

110

Head = NULL

4/16/2012

15

Stack Popint pop(node **head_address)

{

node *p, *head;

int top;

head = *head_address; /*head has address of the first element*/

if (head != NULL)if (head != NULL)

{

p = head; //p: address of stack top element in stack

top = p->data; //data in stack top/first element

head = head->next; //head now has address of 2nd element in stack

free(p); //remove the first element in stack

}

29
Krithika Venkataramani (krithika@cse.iitk.ac.in)

}

else

top = -1; //-1 denotes invalid value or empty list

*head_address = head; /*reflect the changes to head outside*/

return top;

}

Stack operations: Decimal to Binary

void main()

{

node *head = NULL; // head: address of stack top or stack reference node head NULL; // head: address of stack top or stack reference

int decimal, rem, binary[20], j=0;

printf("Enter the (positive) decimal value:");

scanf("%d",&decimal);

/*Push: store binary digits in correct order*/

while(decimal>0)

{

30
Krithika Venkataramani (krithika@cse.iitk.ac.in)

rem = decimal%2;

push(&head,rem);

decimal = decimal/2;

}

4/16/2012

16

Stack operations: Decimal to Binary (cont.)

/*Pop : to read binary digits in correct order*/

printf("Binary representation: ");

while(head!=NULL)while(head! NULL)

{

rem = pop(&head);

printf("%d",rem);

binary[j]=rem;

j++;

}

31
Krithika Venkataramani (krithika@cse.iitk.ac.in)

printf("\n");

binary[j]= -1; //to denote end of binary representation

}

Queues

 Queue operations are also called First-in first-out

 Operations
 E i t t th d f Enqueue: insert at the end of queue

 Dequeue: delete from the beginning of queue

 Code: similar to previous code on linked lists

 Queue Application: Executing processes by operating system
 Operating System puts new processes at the end of a queue

 System executes processes at the beginning of the queue

32
Krithika Venkataramani (krithika@cse.iitk.ac.in)

4/16/2012

17

Circular Lists

 The last element of a linked list points to the first element.

 A reference pointer is required to access the list: head

data t data t data next

head

33
Krithika Venkataramani (krithika@cse.iitk.ac.in)

data next data next data next

Circular Lists

 The list pointer can have the address of the last element.

 The tail/last element can be accessed by the list pointer

Th h d/fi t l t b d f th t il/l t The head/first element can be accessed from the tail/last
element (by list->next)

 Provides flexibility in accessing first and last elements

 Circular lists can be used for queues.

 Useful in enqueue/dequeue operations without needing to
traverse the list list

34
Krithika Venkataramani (krithika@cse.iitk.ac.in)

data next data next data next

4/16/2012

18

Queue using a circular list

 Enqueue: insertion at the end of the list
 The list pointer to the last element is known

 Insert new element using this Insert new element using this

 Dequeue: deletion at the beginning of the list
 Traversing one element from the list pointer (to the last element) gives

the first element

 Traversal of the entire list need not be done

 The list needs to be checked if it is empty

35
Krithika Venkataramani (krithika@cse.iitk.ac.in)

Create an element in the queue

struct Node //list element

{

char *name; // data of an element in the list

t t N d * t // f t th t l tstruct Node *next; // reference to the next element

};

struct Node *create_node(char *Name) //create a list element

{

struct Node *n;

n = malloc(sizeof(struct Node)); //create space for the element

n->name = (char *)malloc((strlen(Name)+1)*sizeof(char)); /*create space for

36
Krithika Venkataramani (krithika@cse.iitk.ac.in)

n->name = (char)malloc((strlen(Name)+1) sizeof(char)); / create space for
name*/

strcpy(n->name,Name);

n->next = NULL;

return n;

}

4/16/2012

19

Print list of elements in queue
void print_list(struct Node *h)
{

struct Node *p;
p = h;

if (p==NULL) //no element in list
{

printf("\nNo elements in the queue");
return;

}
printf("Queue elements");

p = p->next; //first element in the list
while (p!=h) //while last element has not been reached

{

37
Krithika Venkataramani (krithika@cse.iitk.ac.in)

{
printf("\n%s", p->name);
p = p->next;

}
printf("\n%s", p->name); //print last element

}

Enqueue: Add to the end of the queue
struct Node* enqueue(struct Node *list, char *Name)

{

struct Node *n;

n = create_node(Name); // create new element

if (list==NULL) // if no element in the queue

{

list = n;

list->next = list;

}

else //list points to the last element in queue

{

38
Krithika Venkataramani (krithika@cse.iitk.ac.in)

n->next = list->next; //give reference to first element from new element

list->next = n; // add the new element to the end of queue

list = n; //provide reference to the end of the queue

}

return(list);

}

4/16/2012

20

Dequeue: Remove element from queue end
struct Node* dequeue(struct Node *list)
{
struct Node *temp;
if (list==NULL) //error check()

printf("\nError: No elements in queue to dequeue");
else if (list->next==list) //only one node
{

free(list); //return memory to system
list = NULL;

}
else
{

39
Krithika Venkataramani (krithika@cse.iitk.ac.in)

{
temp = list->next; //first node
list->next = list->next->next; //remove the link to the first node
free(temp); //return memory of the deleted first node to the system

}
return(list);

}

Calling different queue operations
void main()
{

struct Node *list = NULL; // address of the last element in the circular list
h d N [50] char command, Name[50];

scanf(" %c", &command); //read queue operation
while ((command!='S') && (command!='s')) //Stop operations: S
{

if ((command=='E') || (command=='e')) //Enqueue: E <name>
{

scanf(" %s", Name);
list = enqueue(list, Name);

40
Krithika Venkataramani (krithika@cse.iitk.ac.in)

q (,);
}
else if ((command=='D') || (command=='d')) //Dequeue: D

list = dequeue(list);
else if ((command=='L') || (command=='l')) //Print queue: L

print_list(list);

4/16/2012

21

Calling different queue operations (cont.)

else //error check

printf("Incorrect operation");

printf("\nEnter another queue operation: ");printf(\nEnter another queue operation:);

scanf(" %c", &command);

}

}

41
Krithika Venkataramani (krithika@cse.iitk.ac.in)

Josephus problem

 A set of players are present in a circle

 Counting from a given player, every ‘nth’ player is considered
‘out’ and eliminated from the gameout and eliminated from the game

 Counting starts again from the next person after the removed
player, and the next ‘nth’ player is removed.

 The game continues until only one player remains, who is the
winner

42
Krithika Venkataramani (krithika@cse.iitk.ac.in)

4/16/2012

22

Algorithm for Josephus Problem

1. Obtain the initial player list

2. Go to starting player. Start count of 1.

3. Increment count, go to next player. If player-list end is reached, go to list 3. Increment count, go to next player. If player list end is reached, go to list
beginning.

4. If count < n, go back to step 3

5. If count = n, remove player from list. Set count = 1 from next player. Go
back to Step 3.

6. If next player is same as current player, declare winner.

 Implementation

43
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 2D Arrays to hold player names

 Circular lists

 Circular lists are an easier implementation for Step 3
 Step 5: easier with doubly linked circular lists

 workaround: eliminate nth player when count = n-1

Josephus Problem with n = 3, starting from ‘1’

1

Start
counting
f thi 1

2

3
5

6

from this
person

list

Pointer to
the circular
list at the
beginning of

44
Krithika Venkataramani (krithika@cse.iitk.ac.in)

4 3: ‘Out of game’: To be deleted

g g
the game

List pointer: to the end of list

4/16/2012

23

Josephus Problem with n = 3, starting from ‘1’ (cont.)

1
6: ‘Out of game: to be deleted

1

2

3
5

6
list

45
Krithika Venkataramani (krithika@cse.iitk.ac.in)

4
Start
counting
from this
person

Josephus Problem with n = 3, starting from ‘1’ (cont.)

1

Start
counting
from this 1

2

3
5

6

person

list

46
Krithika Venkataramani (krithika@cse.iitk.ac.in)

4

list

4: ‘Out of game’: To be deleted

4/16/2012

24

Josephus Problem with n = 3, starting from ‘1’ (cont.)

11

2

3
5

6

Start
counting

list

2: ‘Out of game’: To be deleted

47
Krithika Venkataramani (krithika@cse.iitk.ac.in)

4

counting
from this
person

Josephus Problem with n = 3, starting from ‘1’ (cont.)

1
list

1: is the winner1

2

3
5

6

Start
counting

1: is the winner

48
Krithika Venkataramani (krithika@cse.iitk.ac.in)

4

counting
from this
person

5: ‘Out of game’: To be deleted

4/16/2012

25

Create an element in the list

struct Node //list element

{

char *name; // data of an element in the list

t t N d * t // f t th t l tstruct Node *next; // reference to the next element

};

struct Node *create_node(char *Name) //create a list element

{

struct Node *n;

n = malloc(sizeof(struct Node)); //create space for the element

n->name = (char *)malloc((strlen(Name)+1)*sizeof(char)); /*create space for

49
Krithika Venkataramani (krithika@cse.iitk.ac.in)

n->name = (char)malloc((strlen(Name)+1) sizeof(char)); / create space for
name*/

strcpy(n->name,Name);

n->next = NULL;

return n;

}

Enqueue: Add to the end of the list
struct Node* enqueue(struct Node *list, char *Name)

{

struct Node *n;

n = create_node(Name); // create new element

if (list==NULL) // if no element in the queue

{

list = n;

list->next = list;

}

else //list points to the last element in queue

{

50
Krithika Venkataramani (krithika@cse.iitk.ac.in)

n->next = list->next; //give reference to first element from new element

list->next = n; // add the new element to the end of queue

list = n; //provide reference to the end of the queue

}

return(list);

}

4/16/2012

26

Dequeue: Remove element from queue beginning
struct Node* dequeue(struct Node *list)
{
struct Node *temp;
if (list==NULL) //error check()

printf("\nError: No elements in queue to dequeue");
else if (list->next==list) //only one node
{

free(list); //return memory to system
list = NULL;

}
else
{

51
Krithika Venkataramani (krithika@cse.iitk.ac.in)

{
temp = list->next; //first node
list->next = list->next->next; //remove the link to the first node
free(temp); //return memory of the deleted first node to the system

}
return(list);

}

void josephus()
{

char Name[50], *end = "end";

Josephus problem code

struct Node *list = NULL; // 'Node’ data has player name. 'list' points to
end of the list

int n, i;
printf("\nEnter list of player names\n");
scanf(" %s", Name);
while (strcmp(Name,end)!=0) /*create the list of players, reading names

until "end"*/
{

52
Krithika Venkataramani (krithika@cse.iitk.ac.in)

{
list = enqueue(list, Name); /*same enqueue function as before to

create list*/
scanf(" %s", Name);

}
printf("Enter the count of the next player eliminated: ");
scanf("%d",&n); //nth player eliminated

4/16/2012

27

Eliminating players

printf("Order of players eliminated from game");

/* Play the game by starting count from list beginning*/

while (list !=list->next) // while more than one player is left, continue while (list ! list next) // while more than one player is left, continue
game

{

for (i=1; i < n; i++)

list = list->next;

printf("\n%s",list->next->name); // name of the player eliminated
from the game

li t d (li t) // d f ti b f

53
Krithika Venkataramani (krithika@cse.iitk.ac.in)

list = dequeue(list); //same dequeue function as before

}

printf("The winner of the game is: %s", list->name);

}

Doubly linked lists

 Linked list disadvantages
 Cannot traverse the list backwards

 Cannot delete an element using only a pointer to that element Cannot delete an element using only a pointer to that element

 Doubly linked lists: pointers to next element as well as
previous element
 Use previous element pointer for given node deletion

 Pointers to both ends of the lists are stored
 head: beginning of list

 tail: end of list
Tail

54
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 tail: end of list

Data 15

Previous
NULL

Next
250

address: 200

Data 20

Previous
200

Next
300

address: 250

Data 25

Previous
250

Next
NULL

address: 300

Head

4/16/2012

28

Doubly linked lists: applications

 Queue implementation with doubly linked lists
 Enqueue: insertion at Queue end (using tail)

 Dequeue: deletion at Queue begin (using head) Dequeue: deletion at Queue begin (using head)

 Addition of long integers through doubly linked lists
 Traverse from list end while adding

 Traverse from list beginning to display

55
Krithika Venkataramani (krithika@cse.iitk.ac.in)

Doubly Linked List: element definition

typedef struct Node { /*Element definition*/

int data;

struct node *previous;struct node previous;

struct node *next;

} node;

node *head = NULL;

node *tail = NULL;

node *s; /*Creating first node*/

s = (node *) malloc (sizeof (node));

56
Krithika Venkataramani (krithika@cse.iitk.ac.in)

s->data = 15;

s->previous = NULL;

s->next = NULL;

head = s;

tail = s;

4/16/2012

29

Removing an element

printf("Deleting a given element\n");

scanf("%d", &a); /*enter the data to be deleted*/

p = head;p

while ((p != NULL) && (p->data != a)) /*searching the data to be deleted*/

p = p->next;

if (p != NULL) /*p is the node to be deleted*/

{

if (p->previous == NULL) /*if p is head*/

{

57
Krithika Venkataramani (krithika@cse.iitk.ac.in)

head = head->next; /*move head to next element*/

head->previous = NULL:

}

Removing an element (cont.)

else if (p->next == NULL) /*if p is tail*/

{

tail = tail->previous; /*move tail to previous element*/tail tail previous; / move tail to previous element /

tail->next = NULL;

}

else /*p is in the middle of the list*/

{

(p->previous)->next = p->next;

(p->next)->previous = p->previous;

58
Krithika Venkataramani (krithika@cse.iitk.ac.in)

}

free(p); //deleting the node p

} /*end of if statement*/

print_list(head);

4/16/2012

30

Inserting after a given element
 Will not change head

 May change tail, if the given element (n) is the last element
q = create_node(v); //new node q

scanf("%d", &a); //enter data value, a, to be searched for(,); , ,

p = head;

while ((p != NULL) && (p->data != a)) //a is being searched for

p = p->next;

if (p != NULL) //new node q is inserted after p

{

q->previous = p;

q->next = p->next;

59
Krithika Venkataramani (krithika@cse.iitk.ac.in)

q p ;

if (p->next==NULL) //if p is tail

tail = q; //q becomes new tail

else

(p->next)->previous = q;

p->next = q;

}

Binary Trees

 Searching is more efficient in a binary tree than from an array
 Binary search can be easily understood using binary trees

 Searching starts from the top/root of the binary search trees Searching starts from the top/root of the binary search trees

 Search stops if the number, n, is found in the node

 If n < the number stored in the node, searching is done from
the left child

 If n > the number stored in the node, searching is done from
the right child

60
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 The procedure is continued till the number is found.

4/16/2012

31

Binary Tree Creation

 A binary tree can be created from an array

 One approach:

 Use the first element as the root node, R. Use the first element as the root node, R.

 If the 2nd element is less (greater) than the root, insert it as a left
(right) child, C

 If the 3rd element is less(greater) than the root, traverse to the left
(right) child, C, of root node

 If the 3rd element is less (greater) than this child node, insert it as a left
(right) child to C.

 Repeat this process for every element in the array

61
Krithika Venkataramani (krithika@cse.iitk.ac.in)

 Repeat this process for every element in the array

 If the array is sorted, this approach will lead to an ‘unbalanced’ tree

Binary Tree Creation

1 5 3 2 4
1

L R

Root

Array
L R

5

L R

3

R

Null

Null

62
Krithika Venkataramani (krithika@cse.iitk.ac.in)

L R

2

L R

4

L R

Null Null Null Null

4/16/2012

32

The content of some of these slides are from the
lecture slides of Prof. Arnab Bhattacharya and Prof.
Dheeraj Sanghi

63
Krithika Venkataramani (krithika@cse.iitk.ac.in)

