
3/30/2012

1

ESc101: Pointers and Arrays

Instructor: Krithika Venkataramani

Semester 2 2011-2012

1

Semester 2, 2011-2012

The content of some of these slides are from the
lecture slides of Prof. Arnab Bhattacharya

2

3/30/2012

2

Movie Theater Seat Allocation Vs. Variable Allocation

 Memory size ~ theater seat
capacity

 variable declaration ~ seat
number allocation

 variable address ~ seat
number

 variable value ~ name of

Ticket 1
– E2;

3

person in that seat

Ticket 1:
‘Aditya’;

Pointers to variables

Movie Theater Seat Allocation Variable Allocation

 Buy Ticket 1

 Seating agent seats the
person in the seat E2

 Ticket 1 Seat number = E2

 name of person having
Ticket 1 is ‘Aditya’

 char A;

 scanf(“%c”, &A); /*the input
character is stored in address 5*/

 char *pc; pc=&A; //pc=5

 Value of A is ‘G’;

4

y

 ‘Bharat’ is asked to sit in E2

 person with Ticket 1 is now
‘Bharat’

 *pc = ‘V’;

 /* A = ‘V’ now */

3/30/2012

3

Swapping contents of pointers in functions

Function: pointer content swap
(* *)

Theater: swap persons in seats
void swap(int *pa, int *pb)

{

int temp;

temp = *pb;

*pb = *pa;

*pa = temp;

return;

 swapping the persons seated
in seats of Ticket 1 and
Ticket 2

 E.g. ‘Aditya’ in seat E2
having Ticket 1 is swapped
with ‘Bharat’ in seat D5
h i Ti k 2

5

return;

}

 printf(‘‘a=%d b=%d’’, a, b);

 swap (&a, &b);

 printf(‘‘a=%d b=%d’’, a, b); /*a
and b would now be swapped*/

having Ticket 2.

 Person having Ticket 1 is
now ‘Bharat’. Person having
Ticket 2 is ‘Aditya’.

Theater Seat Allocation Vs. Array Allocation

 Buy 4 tickets for
‘Music’ group

G1 G4 allotted to

 int Music[4];

 Music allotted 4 integer
spaces from address  G1-G4 allotted to

‘Music’ group

 Seat 4 persons
from G1 to G4

 size of ‘Music’

spaces from address
5000

 for (i=0; i<4; i++)

scanf(“%d”,&Music[i]);

//Input: 6 5 8 7

 sizeof(Music) = 4*sizeof

6

group = 4

 ‘Music’ group
starts at G1 and
starting ‘Music’
group member is
‘Aditya’

()
(int)=4*4B=16B

 // Music points to the
first location

 // *Music = 6

 // *(Music+i) = Music[i]

Aditya

Bharat

Chaitanya

Dilip

3/30/2012

4

Theater Seat Allocation Vs. Array Allocation

 array declaration ~ allocation of seat numbers to a group

 array size ~ number of seats

 l t l / t t f i th t t  array element value/content ~ name of person in that seat

 array name ~ seat number of the first person in the group

 The array name is a constant pointer to the address of the
first element

 int a[5] = {5, 4, 3, 2, 1};

 a is the address of a[0] (hence a pointer)

7

 a is the address of a[0] (hence a pointer)

 a is a constant pointer, as it is fixed to the address of a[0]

 a[0] is the value of the first element of the matrix, i.e. 5.

 *a is the same as a[0], and is the value of the first element

Dynamic memory allocation

 Dynamic memory allocation is required when the
programmer cannot determine in advance how much space
will be required by the programwill be required by the program

 Space is dynamically allocated using malloc()

 malloc() takes size in bytes as a parameter and returns void *,
i.e., a pointer without a specific type

 Explicit type casting of this pointer is required

 Space should be freed after use using free()

8

 free() takes as input a pointer returned by malloc()

3/30/2012

5

Dynamic memory allocation to arrays

Array allocation Theater seating

 int n, *Music;

 Music = (int *) malloc(n
*sizeof(int));

 for (i = 0; i < n; i++)

Music[i] = i;

 Allot agent to hold seats

 Give n seats for ‘Music’ group

 ‘Music’ group member 0 to n-1
are ‘Aditya’, ‘Bharat’, …

 ‘Music’ group leaves the seats

9

 free(Music); /*space freed*/

 Music group leaves the seats

Dynamic double array

#include <stdio.h>

#include <stdlib.h> // required for malloc

int main()int main()

{

double *a;

int i, n;

double b[7] = {10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0};

printf("Enter the size of array: ");

scanf("%d", &n);

10

a = (double *)malloc(n * sizeof(double)); /* sizeof(double) is required as
it is in bytes*/

printf("Size of a is %d\n", sizeof(a)); // size of the pointer

printf("Size of b is %d\n", sizeof(b)); /*size of array is the total space
allotted in bytes*/

printf("Number of elements in b is %d\n", sizeof(b) / sizeof(double));

3/30/2012

6

Dynamic double array (cont.)

for (i = 0; i < n; i++)

a[i] = i; // array notation

for (i = 0; i < n; i++)

printf("%lf %lf\t", a[i], *(a + i));

printf("\n");

printf("&a is %u, while a[0] is at %u\n", &a, &a[0]); /*a is a separate
variable stored elsewhere*/

11

printf("&b is %u, while b[0] is at %u\n", &b, &b[0]); /* b is not stored
separately*/

free(a); // important as otherwise space is not freed

}

One dimensional array allocation

n 400

i 404

700

0
3

12

10.0

9.0

8.0

7.0

6.0

…

b[0] 500

508

516

524

532

…

a[0] 5500

5508

5516

0.0
1.0

1

2.0

2

b = 500
&b[0] = 500
b[0] = 10.0 After array

allocation, a =
5500

12

5.0

4.0

540

548

…

a 600

…
5500

&a[0] = 5500
After array
assignment, a[0] =
0.0

3/30/2012

7

One dimensional array access

 int num[5];

 num: address of num[0]

 i t t [0]

 int *num, n=5;

 num = (int *)
malloc(n*sizeof(int)); num: pointer to num[0]

 num[0]

 num[k]

 &num[k]

malloc(n*sizeof(int));

 *num

 *(num+k)

 num+k

13

2D arrays are stored contiguously

 2D arrays are stored row-
wise

 double d[2][3] = {10 0 9 0

0

 double d[2][3] = {10.0,9.0,
8.0, 7.0, 6.0, 5.0};

 d = 500, i.e. address of
array d

 d[0] = 500, i.e. address of
d[0][0]

10.0

9.0

8.0

7.0

6.0

d[0][0] 500

d[0][1] 508

d[0][2] 516

d[1][0] 524

d[1][1] 532

14

 d[0][0] = 10.0

 d[1] = 524, i.e. pointer to
d[1][0]

 d[1][0] = 7.0

5.0d[1][2] 540

…

600

..

…

3/30/2012

8

Arrays of pointers
 Since a pointer is a variable, arrays of pointers can be declared

 The declaration

char *a[3];

d l t b f 3 i t t h declares a to be an array of 3 pointers to char

 a[i] is a pointer to char

 Common way to declare arrays of strings instead of char a[3][30];

 Useful since the strings can be of variable size
char *a[3] =

{

15

{

`` Kolkata '',

`` Kanpur '',

`` Hyderabad ''

};

 The array pointed to by each a[i] is allotted space through dynamic
memory allocation

Array of pointers to characters

#include <stdio.h>

#include <stdlib.h>

int main()int main()

{

char *a[3];

int i, n;

for (i = 0; i < 3; i++)

{

printf("Enter maximum length of string %d: ", i);

16

scanf("%d", &n);

a[i] = (char *)malloc(n * sizeof(char)); // allocate space for each a[i]

}

3/30/2012

9

Array of pointers to characters (cont.)

for (i = 0; i < 3; i++)

{

printf("Enter string %d: ", i);printf(Enter string %d: , i);

scanf("%s", a[i]);

}

for (i = 0; i < 3; i++)

printf("%s\n", a[i]);

printf("Size of a is %d\n", sizeof(a)); //size of 3 pointer variables=3*8B=24B

for (i = 0; i < 3; i++)

17

printf("Size of a[%d] is %d\n", i, sizeof(a[i])); //size of ith char array

printf("a is at %u\n", &a);

for (i = 0; i < 3; i++)

printf("a[%d] is at %u\n", i, &a[i]);

Array of pointers to characters (cont.)

for (i = 0; i < 3; i++)

printf("a[%d][0] is at %u\n", i, &a[i][0]);

for (i = 0; i < 3; i++)

free(a[i]); // free each a[i]

}

18

3/30/2012

10

5

0

Array of pointers to characters

…

i 400

n 404

700

..

8004 a[1][0]
12
5 R

a[0] 500

a[1] 508

a[2] 516

…

600

801

802

803

…

900

901

600

a[0][0]

800

a[2][0]
900

S

A

M

\0

K

U

19

601

602

603

604

…

902

903

904

905

…

[][]

I

T

A

\0

S

H

\0

Two dimensional array access

 int num[5][3];

 num: address of num[0]

[j] dd f [j][0]

 int **num, n=5, m=3;

 num = (int **)
malloc(n*sizeof(int *)); num[j]: address of num[j][0]

 num[0][0]

 num[j][k]

 num[j]

malloc(n*sizeof(int *));

 num+j = (int *) malloc
(m*sizeof(int));

 *(*(num))

 *(*(num+j)+k)

 *(num+j)

20

 num[j]

 &(num[j][k])

 Can access through
pointers

(j)

 *(num+j)+k

 Can access through array
notation. e.g. num[j][k]

