
3/30/2012

1

ESc101: Pointers and Arrays

Instructor: Krithika Venkataramani

Semester 2 2011-2012

1

Semester 2, 2011-2012

The content of some of these slides are from the
lecture slides of Prof. Arnab Bhattacharya

2

3/30/2012

2

Movie Theater Seat Allocation Vs. Variable Allocation

 Memory size ~ theater seat
capacity

 variable declaration ~ seat
number allocation

 variable address ~ seat
number

 variable value ~ name of

Ticket 1
– E2;

3

person in that seat

Ticket 1:
‘Aditya’;

Pointers to variables

Movie Theater Seat Allocation Variable Allocation

 Buy Ticket 1

 Seating agent seats the
person in the seat E2

 Ticket 1 Seat number = E2

 name of person having
Ticket 1 is ‘Aditya’

 char A;

 scanf(“%c”, &A); /*the input
character is stored in address 5*/

 char *pc; pc=&A; //pc=5

 Value of A is ‘G’;

4

y

 ‘Bharat’ is asked to sit in E2

 person with Ticket 1 is now
‘Bharat’

 *pc = ‘V’;

 /* A = ‘V’ now */

3/30/2012

3

Swapping contents of pointers in functions

Function: pointer content swap
(* *)

Theater: swap persons in seats
void swap(int *pa, int *pb)

{

int temp;

temp = *pb;

*pb = *pa;

*pa = temp;

return;

 swapping the persons seated
in seats of Ticket 1 and
Ticket 2

 E.g. ‘Aditya’ in seat E2
having Ticket 1 is swapped
with ‘Bharat’ in seat D5
h i Ti k 2

5

return;

}

 printf(‘‘a=%d b=%d’’, a, b);

 swap (&a, &b);

 printf(‘‘a=%d b=%d’’, a, b); /*a
and b would now be swapped*/

having Ticket 2.

 Person having Ticket 1 is
now ‘Bharat’. Person having
Ticket 2 is ‘Aditya’.

Theater Seat Allocation Vs. Array Allocation

 Buy 4 tickets for
‘Music’ group

G1 G4 allotted to

 int Music[4];

 Music allotted 4 integer
spaces from address G1-G4 allotted to

‘Music’ group

 Seat 4 persons
from G1 to G4

 size of ‘Music’

spaces from address
5000

 for (i=0; i<4; i++)

scanf(“%d”,&Music[i]);

//Input: 6 5 8 7

 sizeof(Music) = 4*sizeof

6

group = 4

 ‘Music’ group
starts at G1 and
starting ‘Music’
group member is
‘Aditya’

()
(int)=4*4B=16B

 // Music points to the
first location

 // *Music = 6

 // *(Music+i) = Music[i]

Aditya

Bharat

Chaitanya

Dilip

3/30/2012

4

Theater Seat Allocation Vs. Array Allocation

 array declaration ~ allocation of seat numbers to a group

 array size ~ number of seats

 l t l / t t f i th t t array element value/content ~ name of person in that seat

 array name ~ seat number of the first person in the group

 The array name is a constant pointer to the address of the
first element

 int a[5] = {5, 4, 3, 2, 1};

 a is the address of a[0] (hence a pointer)

7

 a is the address of a[0] (hence a pointer)

 a is a constant pointer, as it is fixed to the address of a[0]

 a[0] is the value of the first element of the matrix, i.e. 5.

 *a is the same as a[0], and is the value of the first element

Dynamic memory allocation

 Dynamic memory allocation is required when the
programmer cannot determine in advance how much space
will be required by the programwill be required by the program

 Space is dynamically allocated using malloc()

 malloc() takes size in bytes as a parameter and returns void *,
i.e., a pointer without a specific type

 Explicit type casting of this pointer is required

 Space should be freed after use using free()

8

 free() takes as input a pointer returned by malloc()

3/30/2012

5

Dynamic memory allocation to arrays

Array allocation Theater seating

 int n, *Music;

 Music = (int *) malloc(n
*sizeof(int));

 for (i = 0; i < n; i++)

Music[i] = i;

 Allot agent to hold seats

 Give n seats for ‘Music’ group

 ‘Music’ group member 0 to n-1
are ‘Aditya’, ‘Bharat’, …

 ‘Music’ group leaves the seats

9

 free(Music); /*space freed*/

 Music group leaves the seats

Dynamic double array

#include <stdio.h>

#include <stdlib.h> // required for malloc

int main()int main()

{

double *a;

int i, n;

double b[7] = {10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0};

printf("Enter the size of array: ");

scanf("%d", &n);

10

a = (double *)malloc(n * sizeof(double)); /* sizeof(double) is required as
it is in bytes*/

printf("Size of a is %d\n", sizeof(a)); // size of the pointer

printf("Size of b is %d\n", sizeof(b)); /*size of array is the total space
allotted in bytes*/

printf("Number of elements in b is %d\n", sizeof(b) / sizeof(double));

3/30/2012

6

Dynamic double array (cont.)

for (i = 0; i < n; i++)

a[i] = i; // array notation

for (i = 0; i < n; i++)

printf("%lf %lf\t", a[i], *(a + i));

printf("\n");

printf("&a is %u, while a[0] is at %u\n", &a, &a[0]); /*a is a separate
variable stored elsewhere*/

11

printf("&b is %u, while b[0] is at %u\n", &b, &b[0]); /* b is not stored
separately*/

free(a); // important as otherwise space is not freed

}

One dimensional array allocation

n 400

i 404

700

0
3

12

10.0

9.0

8.0

7.0

6.0

…

b[0] 500

508

516

524

532

…

a[0] 5500

5508

5516

0.0
1.0

1

2.0

2

b = 500
&b[0] = 500
b[0] = 10.0 After array

allocation, a =
5500

12

5.0

4.0

540

548

…

a 600

…
5500

&a[0] = 5500
After array
assignment, a[0] =
0.0

3/30/2012

7

One dimensional array access

 int num[5];

 num: address of num[0]

 i t t [0]

 int *num, n=5;

 num = (int *)
malloc(n*sizeof(int)); num: pointer to num[0]

 num[0]

 num[k]

 &num[k]

malloc(n*sizeof(int));

 *num

 *(num+k)

 num+k

13

2D arrays are stored contiguously

 2D arrays are stored row-
wise

 double d[2][3] = {10 0 9 0

0

 double d[2][3] = {10.0,9.0,
8.0, 7.0, 6.0, 5.0};

 d = 500, i.e. address of
array d

 d[0] = 500, i.e. address of
d[0][0]

10.0

9.0

8.0

7.0

6.0

d[0][0] 500

d[0][1] 508

d[0][2] 516

d[1][0] 524

d[1][1] 532

14

 d[0][0] = 10.0

 d[1] = 524, i.e. pointer to
d[1][0]

 d[1][0] = 7.0

5.0d[1][2] 540

…

600

..

…

3/30/2012

8

Arrays of pointers
 Since a pointer is a variable, arrays of pointers can be declared

 The declaration

char *a[3];

d l t b f 3 i t t h declares a to be an array of 3 pointers to char

 a[i] is a pointer to char

 Common way to declare arrays of strings instead of char a[3][30];

 Useful since the strings can be of variable size
char *a[3] =

{

15

{

`` Kolkata '',

`` Kanpur '',

`` Hyderabad ''

};

 The array pointed to by each a[i] is allotted space through dynamic
memory allocation

Array of pointers to characters

#include <stdio.h>

#include <stdlib.h>

int main()int main()

{

char *a[3];

int i, n;

for (i = 0; i < 3; i++)

{

printf("Enter maximum length of string %d: ", i);

16

scanf("%d", &n);

a[i] = (char *)malloc(n * sizeof(char)); // allocate space for each a[i]

}

3/30/2012

9

Array of pointers to characters (cont.)

for (i = 0; i < 3; i++)

{

printf("Enter string %d: ", i);printf(Enter string %d: , i);

scanf("%s", a[i]);

}

for (i = 0; i < 3; i++)

printf("%s\n", a[i]);

printf("Size of a is %d\n", sizeof(a)); //size of 3 pointer variables=3*8B=24B

for (i = 0; i < 3; i++)

17

printf("Size of a[%d] is %d\n", i, sizeof(a[i])); //size of ith char array

printf("a is at %u\n", &a);

for (i = 0; i < 3; i++)

printf("a[%d] is at %u\n", i, &a[i]);

Array of pointers to characters (cont.)

for (i = 0; i < 3; i++)

printf("a[%d][0] is at %u\n", i, &a[i][0]);

for (i = 0; i < 3; i++)

free(a[i]); // free each a[i]

}

18

3/30/2012

10

5

0

Array of pointers to characters

…

i 400

n 404

700

..

8004 a[1][0]
12
5 R

a[0] 500

a[1] 508

a[2] 516

…

600

801

802

803

…

900

901

600

a[0][0]

800

a[2][0]
900

S

A

M

\0

K

U

19

601

602

603

604

…

902

903

904

905

…

[][]

I

T

A

\0

S

H

\0

Two dimensional array access

 int num[5][3];

 num: address of num[0]

[j] dd f [j][0]

 int **num, n=5, m=3;

 num = (int **)
malloc(n*sizeof(int *)); num[j]: address of num[j][0]

 num[0][0]

 num[j][k]

 num[j]

malloc(n*sizeof(int *));

 num+j = (int *) malloc
(m*sizeof(int));

 ((num))

 ((num+j)+k)

 *(num+j)

20

 num[j]

 &(num[j][k])

 Can access through
pointers

(j)

 *(num+j)+k

 Can access through array
notation. e.g. num[j][k]

