ESc101: Pointers and Arrays

Instructor: Krithika Venkataramani
Semester 2, 2011-2012

The content of some of these slides are from the
lecture slides of Prof. Arnab Bhattacharya

3/30/2012

3/30/2012

Movie Theater Seat Allocation Vs. Variable Allocation

. ::::::::: m Memory size ~ theater seat
(Sglalnlinlslnlnlslsl Capa_C|ty
Nglglaslalslslslnlsl . .
E@OOamae Ticket: ™ variable declaration ~ seat
FOMOOooos o - g2; number a”ocatlon
iglalslalslslslslsl
Nalslslslslslslsls m variable address ~ seat
Naglsglslslslslnlsls
Nalalslalalslnlalsl number
k00006006000 m variable value ~ name of
Niglglsislnlslnlyls! .
A6 E6606666 person in that seat

Ticket 1:

‘Aditya’;

Pointers to variables

Movie Theater Seat Allocation Variable Allocation
m Buy Ticket 1 m char A;
m Seating agent seats the m scanf(*%c”, &A); /+the input

person in the seat E2 character is stored in address 5*/

m Ticket 1 Seat number = E2 m char *pc; pc=&A,; /ipc=5

m name of person having m Value of Ais ‘G’;
Ticket 1 is ‘Aditya’

m ‘Bharat’isasked tositinE2 m *pc="V’;

m person with Ticket 1 is now m /*A="V now?*

‘Bharat’

3/30/2012

Swapping contents of pointers in functions

Function: pointer content swap Theater: swap persons in seats

void swap(int *pa, int *pb) m swapping the persons seated
{ in seats of Ticket 1 and

int temp; Ticket 2

temp = *pb;

m E.g. ‘Aditya’ in seat E2

:pb =*pa; having Ticket 1 is swapped
pa =temp; with ‘Bharat’ in seat D5
;eturn; having Ticket 2.

intf(“a=%d b=%d", a, b);
= printf(“a /Odb_ A% bk person having Ticket 1 is
m swap (&a, &b); now ‘Bharat’. Person having

m printf(*a=%d b=%d", a, b); /a Ticket 2 is ‘Aditya’.
and b would now be swapped*/ 5

Theater Seat Allocation Vs. Array Allocation

 osenosaae ™ BU4tcketsfor = intMUSiC[4]; |
cpeeeeeeee MUSIC group m Music allotted 4 integer
cODOOOOEET o G1-G4 allotted to spaces from address
‘Music’ group 5000
m Seat4persons W for (i=0; i<4; i++)
from G1 to G4 scanf(“%d”,&Musicli]);
Nnput: 6587
' m size of ‘Music’ m sizeof(Music) = 4*sizeof
group = 4 (int)=4*4B=16B
m ‘Music’ group m // Music points to the
starts at G1 and first location
. starting ‘Music’ g //*Music = 6
Chaitanya AN gar\gﬁsamember Is o I *(Music+i) = Music[i]

3/30/2012

Theater Seat Allocation Vs. Array Allocation

array declaration ~ allocation of seat numbers to a group
array size ~ number of seats

array element value/content ~ name of person in that seat
array name ~ seat number of the first person in the group

The array name is a constant pointer to the address of the
first element

inta[5]=1{5,4,3, 2, 1}

a is the address of a[0] (hence a pointer)

ais a constant pointer, as it is fixed to the address of a[0]
a[0] is the value of the first element of the matrix, i.e. 5.

*a is the same as a[0], and is the value of the first element

Dynamic memory allocation

m Dynamic memory allocation is required when the
programmer cannot determine in advance how much space
will be required by the program

m Space is dynamically allocated using malloc()

m malloc() takes size in bytes as a parameter and returns void *,
i.e., a pointer without a specific type

m Explicit type casting of this pointer is required
m Space should be freed after use using free()
m free() takes as input a pointer returned by malloc()

3/30/2012

Dynamic memory allocation to arrays

Array allocation Theater seating
m intn, *Music; m Allot agent to hold seats
m Music = (int *) malloc(n m Give n seats for ‘Music’ group
*sizeof(int)); m ‘Music’ group member 0 to n-1
m for (i=0;i<n;i+t) are ‘Aditya’, ‘Bharat’, ...
Musicli] = ;

m ‘Music’ group leaves the seats
m free(Music); *space freed*/

Dynamic double array

#include <stdio.h>
#include <stdlib.h> Il required for malloc
int main()
{
double *a;
inti, n;
double b[7] ={10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0};
printf("Enter the size of array: ");
scanf("%d", &n);

a = (double *)malloc(n * sizeof(double)); /* sizeof(double) is required as
itis in bytes*/

printf("Size of a is %d\n", sizeof(a)); I size of the pointer

printf("Size of b is %d\n", sizeof(b)); I*size of array is the total space
allotted in bytes*/

printf("Number of elements in b is %d\n", sizeof(b) / sizeof(double)); 10

3/30/2012

Dynamic double array (cont.)

for (i=0;i<n;i+t)
afi]=i; /larray notation

for (i=0;i<n;i+t)
printf("%If %If\t", a[i], *(a + i));
printf("\n");

printf("&a is %u, while a[0] is at %u\n", &a, &a[0]); /*ais a separate
variable stored elsewhere*/

printf("&b is %u, while b[0] is at %u\n", &b, &b[0]); /* b is not stored
separately*/

free(a); /limportant as otherwise space is not freed

11

One dimensional array allocation

700
n 400 3
i 404 -

b[0]gy 500 10.0 al0] @550 0.0

b =500 508 9.0 e .
&b[0] = 500 516 8.0 e -
b[0] = 10.0 521 IS After array
. allocation, a=
532 6.0 5500
540 50 al0] = 5500
After array
548 4.0 assignment, a[0] =
0.0
a 600 ggqq

12

One dimensional array access

int num([5];

num: address of num[0]
num: pointer to num([0]
num[0]

num[k]

&num[k]

int *num, n=5;

num = (int *)
malloc(n*sizeof(int));
*num

*(num+k)

num+k

13

2D arrays are stored contiguously

0

dojlo] 500 10.0
dioj[l] 508 9.0
dojl2] 516 80
diijo] 524 70
diiJl] 532 6.0
diij2] 540 50

600

2D arrays are stored row-
wise

double d[2][3] = {10.0,9.0,
8.0, 7.0, 6.0, 5.0};

d =500, i.e. address of
array d

d[0] =500, i.e. address of
d[O][0]

d[0][0] = 10.0

d[1] =524, i.e. pointer to
d[1][0]

d[1][0]=7.0

14

3/30/2012

Arrays of pointers
m Since a pointer is a variable, arrays of pointers can be declared
m The declaration
char *a[3];
m declares a to be an array of 3 pointers to char
m a[i] is a pointer to char
m Common way to declare arrays of strings instead of char a[3][30];
m Useful since the strings can be of variable size
char *a[3] =
{
~ Kolkata ",
™ Kanpur ",
" Hyderabad "
h
m The array pointed to by each a][i] is allotted space through dynarpSic
memory allocation

Array of pointers to characters

#include <stdio.h>
#include <stdlib.h>
int main()
{
char *a[3];
inti, n;
for (i=0;i<3;i++)
{
printf("Enter maximum length of string %d: ", i);
scanf("%d", &n);
a[i] = (char *)malloc(n * sizeof(char)); // allocate space for each ai]

16

3/30/2012

Array of pointers to characters (cont.)

for (i=0;i<3;i++)
{
printf("Enter string %d: ", i);
scanf("%s", a[i]);
}
for (i=0;i<3;i++)
printf("%s\n", a[i]);
printf("Size of a is %d\n", sizeof(a)); //size of 3 pointer variables=3*8B=24B
for (i=0;i<3;i++)
printf("Size of a[%d] is %d\n", i, sizeof(a[i])); //size of ith char array
printf("ais at %u\n", &a);
for (i=0;i<3;i++)
printf("a[%d] is at %u\n", i, &a[i]);

17

Array of pointers to characters (cont.)

for (i=0;i<3;it+t)
printf("a[%d][0] is at %u\n", i, &a[i][0]);

for (i=0;i<3;it+t)
free(a[i]); // free each a[i]

18

3/30/2012

a[0][0] 4 600

Array of pointers to characters

i 400

n 404
al0] 500 600
a[1]< 508 800
a[2] (516 900

601
602
603
604 \0

>l |Wn

700

a[1][of 80 R

a[2][0] £ 900

801
802 M
803 \0

902
903
94 V0
905

K
901 U
S
H

19

Two dimensional array access

int num(5][3];
num: address of num[0]
num[j]: address of num(j][0]

num([0][0]

num[j][k]

num[j]

&(num[j][k])

Can access through
pointers

int *num, n=5, m=3;
num = (int **)
malloc(n*sizeof(int *));
num+j = (int *) malloc
(m*sizeof(int));
((numy))

((num+j)+k)

*(num+j)

*(num+j)+k

Can access through array
notation. e.g. num[j][k]

20

3/30/2012

10

