
3/13/2012

1

ESc101: Decision making using if-else and
switch statements

1

Instructor: Krithika Venkataramani

Semester 2, 2011-2012

The content of many of these slides are taken from the

2

e co te t o a y o t ese s des a e ta e o t e
Lecture slides of Prof. Arnab Bhattacharya and Prof.
R. K. Ghosh

Writing Simple C Programs

 Use standard files having predefined instructions
 stdio.h: has defined standard input and output instructions

 always needed for reading input /displaying output

 math.h: has specific math instructions such as square-root, power

 not needed if these instructions are not used

#include<stdio.h>

3

#include stdio.h

#include<math.h>

 main function has the program
void main()

{

}

Writing Simple C Programs

 Declare variables to use/process different data types
int number;

float real;

char letter;

 Can assign a constant as initial value of the variables

int number = 5;

4

int number 5;

float real = 5.5;

char letter = ‘A’;

 Use printf for displaying output on monitor
 printf(“\nInteger = %d", number);

Integer = 5

 %d is a place holder (format specifier) for displaying the value of the
integer variable number

 \n :moves to a new line while displaying

3/13/2012

2

Writing Simple C Programs

 Use the appropriate format specifier for displaying different
variable types using printf
 printf(“\nReal number = %f", real);

Real number = 5.500000

 printf(“\nCharacter = %c and Integer = %d", letter, number);

Character = ‘A’ and Integer = 5

5

Character A and Integer 5

Type Format Specifier

char %c

int %d

unsigned int %u

float %f, %g, %e

double %lf

long double %Lf

Writing Simple C Programs
 Use scanf for reading input from keyboard

 scanf requires & before the variable name
 Why it is required will be explained later

 Examples
 scanf(“%d", &number);

 scanf(“%f", &real);

f(“% " &l tt)

6

 scanf(“%c", &letter);

 Use appropriate format specifiers for different variable types

Type Format Specifier

char %c

int %d

unsigned int %u

float %f, %g, %e

double %lf

long double %Lf

if-else statements

 Used in Decision making

 Example Algorithm: Find the minimum of two integers
1. Compare the two integers x and y

2. If x < y, then min = x

3. Otherwise, min = y

 To capture the above logic in C if else statements are used

7

 To capture the above logic in C, if-else statements are used
if (condition)

{

statements1

}
else

{

statements2

}

 Entire if-else is a single statement

Program to find sum and minimum of two numbers
include <stdio.h>

void main ()
{

int x, y;
int min, sum;

scanf (``%d'', &x);
scanf (``%d'', &y);

sum = x + y;

8

sum = x + y;
if (x < y)

{
min = x;

}
else

{
min = y;

}

printf (``Minimum is %d and Sum is %d\n'', min, sum);
}

3/13/2012

3

Understanding if-else statement

if (condition)
{

statements1
}
else
{

statements2
}

9

 Condition must evaluate to a boolean value

 When condition is ‘true’, if-statement is executed

 When condition is ‘false’, else-statement is executed

 Any expression fits as a condition

 else- part can be omitted

}

if (condition)
{

statements1
}

Understanding if-else statement

 A block of statements may be used in if and else part
 A block of statements is equivalent to a single statement

if (condition)
{

statement1
statement2

10

}
else

{
statement3

statement4
}

Nested if-else

 Else with more than one previous if is ambiguous

if ((x + y) > 0)

if (x < y)

printf (``x is minimum '');

else

11

printf (``y is minimum '');

 Rule: else is associated with nearest if

 Indenting lines in program helps in understanding

Nested if-else

 Use braces if intended otherwise

if ((x + y) > 0)

{

if (x < y)

printf (``x is minimum '');

12

}

else

printf (``x + y is negative '');

3/13/2012

4

Testing more than two conditions

 Testing more than two conditions can be done using else if
if (x < 0)

printf (`` Negative '');

else

if (x > 0)

printf (`` Positive '');

13

printf (Positive);

else

printf (`` Zero '');

 is equivalent to
if (x < 0)

printf (`` Negative '');

else if (x > 0)

printf (`` Positive '');

else

printf (`` Zero '');

Example Test for more than two conditions

 Example Algorithm: Find the minimum of two integers or
equality

1. Compare the two integers x and y

2. If x < y, then min = x

3. Otherwise, if y < x, then min = y

4. Otherwise, both numbers are equal

14

4. Otherwise, both numbers are equal

Find minimum of two numbers or find equality
include <stdio.h>

void main ()

{

int x, y;

int min, sum;

scanf (``%d'', &x);

15

scanf (%d , &x);

scanf (``%d'', &y);

if (x < y)

{

min = x;

printf (``Minimum is %d \n'', min);

}

Find minimum of two numbers (cont.)

else if (y < x)

{

min = y;

printf (``Minimum is %d \n'', min);

}

16

else

printf(“\nBoth numbers are equal”),

}

3/13/2012

5

Sample program to find triangle type

 Please take the 3 sides of a triangle, and print whether the
triangle is an equilateral, isosceles or scalene triangle.

#include<stdio.h>

void main()

{

17

float side1, side2, side3; //declare variables to take the 3 sides
of a triangle

printf(“Enter the three sides of a triangle: “);

scanf(“%f %f %f”, &side1, &side2, &side3);

if (((side1+side2)>side3) && ((side2+side3)>side1) &&
((side1+side3)>side2))

{

Program to find type of triangle (cont.)

if ((side1==side2) && (side1==side3))

printf(“ \nThe triangle is equilateral”);

else if ((side1!=side2) && (side2!=side3) && (side1!=side3))

printf(“\nThe triangle is scalene”);

else

printf(“\nThe triangle is isosceles”);

18

printf(\nThe triangle is isosceles);

}

else

printf(“\nA triangle is not formed using these sides”);

}

Lab 1 : Q1 sample solutions

 Take a character as input from the user. Check whether the
character is an alphabet or not.

 Algorithm:

1. Input a character

2. If character is between ‘a’ to ‘z’, or between ‘A’ to ‘Z’, it is an

19

alphabet

3. Otherwise, it is not an alphabet

Lab 1 sample solutions: Q1
#include<stdio.h> /* Q1. Author:rahule@cse.iitk.ac.in */

int main()

{

char ip;

printf("Enter the character to be checked: ");

scanf("%c",&ip);

//checking if it is a Alphabet

20

g p

if((ip>='A'&&ip<='Z') || (ip>='a'&&ip<='z'))

{

printf("The input character is an alphabet\n");

}

else

{

printf("The input character is NOT an alphabet\n");

}

}

3/13/2012

6

Lab 1: Q2 Sample Solutions

 Take as input 4 numbers. Print arithmetic mean & harmonic
mean. Print the maximum of the two means.

 Algorithm

1. Input 4 real numbers: a, b, c, d

2. If any of the numbers is not positive, harmonic mean is not

21

valid

3. Otherwise, 1/(harmonic mean) = ((1/a) + (1/b) + (1/c) + (1/d))/4

4. Arithmetic mean = (a+b+c+d)/4

5. If harmonic mean is valid and harmonic mean > arithmetic
mean, max = harmonic mean

6. Otherwise, max = Arithmetic mean

Lab 1: Q2 Sample Solutions
/* Q2. Author:rahule@cse.iitk.ac.in */

#include<stdio.h>

int main()

{

float n1,n2,n3,n4,arithmetic_mean=0,harmonic_mean;

int flag = 0;

scanf("%f%f%f%f”, &n1,&n2,&n3,&n4);

22

scanf(%f%f%f%f , &n1,&n2,&n3,&n4);

//calculating the arithmetic mean

arithmetic_mean=(n1+n2+n3+n4)/4;

printf("Arithmetic Mean: %f\n",arithmetic_mean);

//calculating the harmonic mean

if(n1 <= 0 || n2 <= 0 || n3 <= 0 || n4 <= 0)

printf("Harmonic mean can not be calculated as atleast one number is not
positive!\n");

Lab 1: Q2 Sample Solutions (cont.)
else

{
flag = 1;

harmonic_mean=4/(1/n1 + 1/n2 + 1/n3 + 1/n4);
printf("HarmonicMean: %f\n",harmonic_mean);

}
//checking which one is maximum

if((flag ==1)&&(arithmetic_mean= =harmonic_mean))

23

((g) (_ _))
{

printf("Harmonic Mean is equal to arithmetic meanr\n");
printf("Maximum mean = %f",harmonic_mean);

}
else //prints Arithmetic mean is larger even if harmonic mean is not valid

{
printf("Arithmetic Mean is larger\n");
printf("Maximum mean = %f",arithmetic_mean);

}
}

Q2 alternate sample solution using nested if-else

//calculating the harmonic mean

if(n1 <= 0 || n2 <= 0 || n3 <= 0 || n4 <= 0)
{

printf("Harmonic mean can not be calculated!\n");
}

else
{

24

harmonic_mean=4/(1/n1 + 1/n2 + 1/n3 + 1/n4);
//printing the results

printf("HarmonicMean: %f\n",harmonic_mean);
//checking which one is maximum

if(arithmetic_mean>harmonic_mean)
printf("Arithmetic Mean is larger\n");

else
printf("Harmonic Mean is equal to Arithmetic meanr\n");

}

}

3/13/2012

7

Lab 1: Q3 sample solution using if statement

 Take a 5 digit integer as input from the user. Count the total
number of zeroes in it and print the result.

 Algorithm:

1. Input the integer

2. Initialize zero_count to 0

25

3. Find the remainder of integer by dividing using 10

4. If remainder is zero, then increment zero_count by 1

5. Divide the integer by 10

6. Use the quotient as the new integer

7. Repeat Steps 3 to 5 an additional 4 times

8. Display zero_count

Lab 1: Q3 sample solution using if statement
/*author:rahule@cse.iitk.ac.in*/

#include<stdio.h>

int main()

{

int n, count=0;

printf("Enter the FIVE DIGIT integer\n");

scanf("%d",&n);

26

if (((n<=99999)&&(n>=10000)) || ((n>=-99999)&&(n<=-10000)))

{ //check for zeroes only if it is a 5 digit integer

if(n%10 == 0) //checking if the 5th(last) digit is zero

count++;

n=n/10; //converting to a 4 digit integer

if(n%10 == 0) // checking if 4th digit of original integer is zero

count++;

n=n/10; //converting to a 3 digit integer

Lab 1: Q3 sample solution using if statement (cont.)

//checking if the 3rd digit is zero

if(n%10 == 0)

count++;

n=n/10;

//checking if the 2nd digit is zero

if(n%10 == 0)

27

()

count++;

n=n/10;

}// end of if condition for checking a 5 digit integer

//printing the results

printf("Number of zeros: %d\n",count);

}

Multiple if-else

 Consider
if (section == 1)

printf (`` TB101 '');

else if (section == 2)
printf (`` TB102 '');

else if (section == 12)

f (``)

28

printf (`` TB112 '');
else

printf (`` Wrong section '');

 Multiple else-if statements are better written using switch
statements

 ‘switch’ works only when the same variable is tested for
equality against different constant values

3/13/2012

8

Switch used for multi-way decision

switch (expression)

{
case constant-expression1: statements; break;

case constant-expression2: statements; break;
default: statements; break;

}

it h i f l h lti l d i i b d

29

 switch is useful when multiple decisions can be made
depending on the value of the expression

 The expression must evaluate to a constant integer
 The case values are constant integers

 Characters are mapped to integers and can be used in switch

 Real numbers (float, double) cannot be used in switch

 default is executed when variable evaluates to none of the
other values

 break brings the control out of the switch statement

Switch statement

 Example
switch (section)
{

case 1: printf (`` TB101 ''); break ;
case 2: printf (`` TB102 ''); break ;
case 12: printf (`` TB112 ''); break ;

f f (``)

30

default : printf (`` Wrong section ''); break ;
}

Switch statement

 Important: Without break, next case is also executed

switch (x)

{

case 0: printf (``0'');

case 1: printf (``1'');

31

default : printf (``2'');

}

 When x is 0, all of 0, 1 and 2 are printed

 When x is 1, both 1 and 2 are printed

Switch statement without break

 switch case without break is useful when same statement
needs to be executed for multiple cases

 Suppose there are two sections, 1 and 2, on Monday, two
sections, 3 and 4, on Tuesday, and others on Wednesday

 Output the day based on input section
it h (ti)

32

switch (section)

{

case 1: ;

case 2: printf (`` Monday ''); break ;

case 3: ;

case 4: printf (`` Tuesday ''); break ;

default : printf (`` Wednesday ''); break ;

}

3/13/2012

9

break brings control out of switch statement

 Control is transferred to the case statement depending on the
value of the expression

 Control is transferred to default case when the value of the
expression does not match any of the case values

 Without break, the statements in the next case are also
executed

33

executed

 While break is not required for the last case (could be the
default case), it is a good programming practice as its useful
when additional cases are inserted

 Removing break is sometimes useful when the same
statement needs to be executed for multiple cases

switch used for multiple options in menu selection

printf(“Travel guide\n”);

printf(“A: Air/flight timings\n”);

printf(“T: Train timings\n”);

printf(“B: Bus timings\n”);

printf(“Enter your choice: ”);

scanf(“%c” &character);

34

scanf(“%c”, &character);

switch (character)

{

case ‘A’: air_display(); break; //Using a function to display flight times

case ‘T’: train_display(); break; //using a function to display train times

case ‘B’: bus_display(); break; //using a function to display bus times

default : printf(“No choice made”);

}

break not used when multiple cases need same
statement
/*display color name based on first character of color (small or

capital letters)*/

scanf(“%c”, &color)

switch (color)

{

35

case ‘w’: case ‘W’: //for both ‘w’ and ‘W’, “White” is displayed

printf(“White\n”); break;

case ‘r’: case ‘R’: //for both ‘r’ and ‘R’, “Red” is displayed

printf(“Red\n”); break;

case ‘g’: case ‘G’: //for both ‘g’ and ‘G’, “Green” is displayed

printf(“Green\n”); break;

default : printf(“Choose among known colors\n”);

}

More on Switch statement

 The case values in switch are to be constant integers

 break brings execution out of the switch statement

 For the same statement s to be executed for multiple cases,
put the statements in the last of these cases and leave the
rest of the case values blank with no break

it h (l)

36

switch (color)

{

case ‘w’: case ‘W’: //for both ‘w’ and ‘W’, “White” is displayed

printf(“White\n”); break;

}

switch (color)

{

case ‘w’ || ‘W’: printf(“White\n”); break; //does not provide desired

} //result as ‘w’ || ‘W’ = 1 and this case is equivalent to case 1

3/13/2012

10

Sample program

 Write a program that takes as input a letter and displays if it
is a vowel or consonant using a switch statement

scanf(“%c”, &c);

//error check to see if c is an alphabet or not

switch (c)

37

{

case ‘a’: case ‘A’: case ‘e’: case ‘E’: case ‘I’: case ‘i‘: case ‘o’:

case ‘O’: case ‘u’: case ‘U’:

printf(“\n It is a vowel”); break;

default: printf(“\nIt is a consonant”); break;

}

Example: if else ladder

 Write a program to calculate energy bill. Read the starting
and ending meter reading. The charges are as follows

No. of units consumed Rates in Rs.

38

200-500 3.50

100-200 2.50

0-100 1.50

Energy bill using if else ladder

 Algorithm

1. Input initial and final readings

2. Units consumed,c, = final reading – initial reading

3. If c is between 0 and 100, bill = Rs. c*1.50

4. Otherwise, if c is between 100 and 200, bill = Rs. c*2.50

39

5. Otherwise, if c is between 200 and 500, bill = Rs. c*3.50

6. Display bill

Energy bill using if else ladder

int initial, final, consumed;

float bill=0;

printf(“Enter initial and final readings:”);

scanf(“%d %d”,&initial, &final);

consumed = final – initial;

if ((consumed>0 &&(consumed<100))

bill = consumed*1 5;

40

bill = consumed*1.5;

elseif ((consumed<200)&&(consumed>=100))

bill = consumed*2.5;

elseif ((consumed<500)&&(consumed>=200))

bill = consumed*3.5;

else

printf(“\nConsumption is expected to be within 0 and 500”)

print(“\nBill amount = %f”,bill);

3/13/2012

11

Energy bill using switch statement

switch (consumed/100)

{

case 0: bill = consumed*1.5; break;

case 1: bill = consumed*2.5; break;

case 2:

 3

41

case 3:

case 4:

case 5:

if (consumed <= 500)

bill = consumed*3.5;

break;

default: printf(“\nUnits consumed is between 0 and 500”);

}

Example using switch statement

 Display the name of day of the week

 Algorithm

 Input the day number of the week between 1 and 7

 Depending on the day number, display the day of the week

 1: Sunday

42

 2: Monday

 3: Tuesday

 4: Wednesday

 5: Thursday

 6: Friday

 7: Saturday

Day of the week using switch statement
int day;

printf(“\nEnter the day of the week from 1 to 7:”);

scanf(“%d”, &day);

switch(day)

{

case 1: printf(“Sunday”); break;

43

p (y)

case 2: printf(“Monday”); break;

case 3: printf(“Tuesday”); break;

case 4: printf(“Wednesday”); break;

case 5: printf(“Thursday”); break;

case 6: printf(“Friday”); break;

case 7: printf(“Saturday”); break;

default: printf(“Week has only 7 days”);

}

