C Programming
|—Fundamen'tals of C

LArithmetic expressions

Expressions

letter/digit/_

The above rules indicates that the identifier must begin either a letter or
underscore (non-digit) followed by 0 or more digits/letters.

R. K. Ghosh (IIT-Kanpur) C Programming January 12, 2011 15 / 26

C Programming
|—Fundamen'tals of C
|—Arithmetic expressions

Expressions
Valid Non valid
this This 1this
thisl15 T1hisb th$is1b
this_is_car, thatIsAhouse | T@1hisb
_This is 15 _Jthis
_15_is_a Number

e printf and scanf can be used for defining identifiers.

@ But no reserved words.

R. K. Ghosh (IIT-Kanpur) C Programming January 12, 2011 15 / 26

C Programming
|—Fundamen'tals of C

LArithmetic expressions

Expressions

Unary operators: operate on one operand, eg., &, ++, —, - (dual)

Binary operators: most operators belong to this class.

PPPP 9

Comma operator: evaluates each expression separated by comma
but returns the rightmost.

o Conditional operator: requires 3 operands
< condition > 7 statement 1 : statement 2

R. K. Ghosh (IIT-Kanpur) C Programming January 12, 2011 15 / 26

C Programming
|—Fundamen'tals of C
LArithmetic expressions

Expressions
int total;
int i =5, j =10; k = 15;

total = (i +j, j + k, i + k);
printf (" Total = %d\n", total);

total will return the value 20 (i + k)

int z, a, b;

z=(a>b) ?a: b;

Sets z to max(a, b)

R. K. Ghosh (IIT-Kanpur) C Programming

January 12, 2011

15 / 26

C Programming
|—Fundamen'tals of C
LArithmetic expressions

Ivalue and Assignment Operator

Widentiﬁer}—{ = }—{expression}—@

@ Requires an Ivalue as its left operand.

@ L-value: represents an object stored in memory, which is neither a
constant nor a result of computation.

@ So a variable can be an Ivalue, but neither any expressions or or any

constant.

12 = i; // WRONG
i +j =0, // WRONG
—i=j; // WRONG
i+ = // WRONG

R. K. Ghosh (IIT-Kanpur) C Programming January 12, 2011 16 / 26

C Programming
|—Fundamen'tals of C

LArithmetic expressions

Ivalue and Assignment Operator

@ Allows combination arithmetic operator with assignment. +=, -=
*=, /=’ %:
o Multiple assignment also possible: i = j = 10

>

o Similarlly multiple compound assignments are possible where.
evaluation is right associative, ie.,
i += j += k; means i += (j += k);

R. K. Ghosh (IIT-Kanpur) C Programming January 12, 2011 16 / 26

C Programming
|—Fundamen'tals of C
LArithmetic expressions

Increment & Decrement

Increment adds 1 to operand. Decrement substracts 1 from operand.
Postfix and prefix of operator is possible.
Postfix increments after use of the value
Prefix increments before use of the value

Left associative: eg. a = i++ + j++;ifi = 1, j = 2, thena— 3

Whereas, ina = ++i + ++j; a = Omeans i— 0, j— 0. if i, j
are non-negative.

R. K. Ghosh (IIT-Kanpur) C Programming January 12, 2011 17 / 26

C Programming
|—Fundamen'tals of C

LArithmetic expressions

Precedence order

term

expression

term

——={ expression — operator |— expression ——
© D

R. K. Ghosh (IIT-Kanpur) C Programming January 12, 2011 18 / 26

C Programming
LFundamentaIs of C

LArithmetic expressions

Precedence order

Precedence | Operator Symbol Associativity

1 Increment (postfix) | ++ left
Decrement (postfix) | — left

2 Increment (prefix) ++ right
Decrement (prefix) | — right
Unary plus + right

3 Unary minus - right

4 multiplicative * /% left

5 assignment =, +=, etc. | right

R. K. Ghosh (IIT-Kanpur) C Programming January 12, 2011 18 / 26

C Programming
|—Fundamen'tals of C

LArithmetic expressions

Precedence order

Consider the code
a=b+4=ctH —d + —e/—F;

Highest precedence is for c++

Next in precedence order are: ——e and -f

So putting parentheses in that order around the expressions:
[e = b= () - d + (—e)/(—F)s |

And finally, full parenthetic expression will be

[(= (b= (((e+0) = d) + (——e)/(=1))))); |

With a=1, b=2, c=12, d=2, e=5, f=2, it evaluates: a = 10, b = 10

R. K. Ghosh (IIT-Kanpur) C Programming January 12, 2011 18 / 26

C Programming
|—Fundamentals of C

|—Arithmetic expressions

Precedence order

@e-a+ (c+b*x(c+a)/c-b/a)+a-b/ 2willbe
evaluated as
(((ca) + ((c+ ((b*x (c+a)) /<)) -((d/a)-
(b/2))
@ Assume int i = 5, j = 10, k = 2, result;
e Then value result = 2 * i %, 56 *x 4 + (j - 3) / (k + 2); will
be evaluated as ((((2*i)%5) * 4) + ((j-3)/(k+2))) which is 0
o Whereas result = 2 x 1 % (56 x 4) + (j - 3) / (k + 2);
evaluated as 11

R. K. Ghosh (IIT-Kanpur) C Programming January 12, 2011 18 / 26

C Programming
|—Fundamen'tals of C

LArithmetic expressions

Precedence order

int |.'nain.() {
Int 1

printf(” Enter a two digit number: ");
scanf("%d”, &i);

printf (" Reversed number is: %d\n”, i%10%10 + i/10);

R. K. Ghosh (IIT-Kanpur) C Programming January 12, 2011 18 / 26

C Programming
|—Fundamen'tals of C

LArithmetic expressions

Precedence order

@ All expressions in parenthesis must be evaluated separately, and inside
out.
@ The operator precedence rules for operators in same subexpression:
e Unary 4 and - are evaluated first
o * /, % evaluated next
@ Associtivity rule

e Unary operators in same subexpressions and at same precedence level
(such as +, - or *, /) are evaluated right to left.

e Binary operators in same subexpressions and at same precedence level
are evaluated left to right.

R. K. Ghosh (IIT-Kanpur) C Programming January 12, 2011 18 / 26

C Programming
|—Fundamentals of C

|—Arithmetic expressions

Precedence order

i =3j =5k=0assignsk = 0then j = 0, finally i = 0,
Subexpression evaluation may produce unexpected results, eg.,
a=5;c=(b=a+5)-(a=1);

Either c = 9 or ¢ = 5 depending on which subexpression is
evaluated first.

Consider i = 2; j =i % i++; maygivej = 6orj = 4

Expression int i = 1; i += 2; is different from

int i = 1; i += i++ + i++;, (1 may be incremented twice).

Avoid writing expressions which modify variable within the
expression itself

R. K. Ghosh (IIT-Kanpur) C Programming January 12, 2011

18 / 26

C Programming
|—Fundamentals of C

LMore examples expressions

Common Problems

Suppose an object is thrown up with initial velocity of 50m/sec. How high
the object will rise and what time does it take to reach the highest point.

Two persons are standing apart by 1m, each has a mass of 50kg. Let
G = 6.67 x 107" Nm?/kg? and reqren = 6.64 x 10%m. Determine the
force of F' gravitation between P1 and P2. How many times should F' be
multiplied to get the force of gravitation between the Earth and P1.

How many molecules of HoO are present in 1 gm of snowflakes? Avogadro
number = 6.022x102%3, and atomic mass of H = 1.01 and that of O =
15.9994.

R. K. Ghosh (IIT-Kanpur) C Programming January 12, 2011 19 / 26

C Programming
|—Fundamen'tals of C

LMore examples expressions

Common Problems

#include <stdio.h>
int main() {
double g = —10.0;
double u, t, h;

printf(” Enter initial velocity: ");
scanf("%If", &u);
t = —u/g; // since v =0, t = —u/g

=(u+ 05 % g=x*xt) *xt; // d=ut+ (1/2) ft"2
printf (" height = %.3f\n”, h);

R. K. Ghosh (IIT-Kanpur) C Programming January 12, 2011

19 / 26

C Programming
|—Fundamen'tals of C

LMore examples expressions

Common Problems

#indclude <stdio.h>
int main() {
double ml, m2, f1, f2, d;
double G = 6.67e—11, M = 6.0e24, R = 6.4¢e06;

printf(” Enter masses of two persons: ");
scanf("%If %If", &ml, &m2);
printf (" Enter distance between two persons: ");

scanf("%If", &d);

fl = (G * ml x m2) / (dxd);

f2 = (G+«M=xml) / (R x R);
printf("f2 = %g is %g times of fl = %g\n",f2, f2/f1, f1);
}
R. K. Ghosh (IIT-Kanpur) C Programming January 12, 2011 19 / 26

C Programming
|—Fundamen'tals of C

LMore examples expressions

Common Problems

#include <stdio.h>
#define AVOGADRO 6.022e23
int main() {
double w, mole_mass, mole_val, molecules;

printf(”" Enter weight of substance: ");
scanf("%If", &w);

mole_mass = 1.01 % 2.0 + 15.9994;
mole_val = w/mole_mass;
molecules = mole_val x AVOGADRO;

printf(” Molecules in %.2f gm of snowflakes = %g\n", w, molecule);

R. K. Ghosh (IIT-Kanpur) C Programming January 12, 2011

19 / 26

