-Mixed mode arithmetic

Data Types

Need for Many Types

- Different types are needed because one type is not suitable for representing data of another type.
- Mixing types may result in precision loss, overflow, underflow and ability to process full range.
- Application performance suffers while performing numerically intensive computation if inappropriate data types are used.
- Exceptions must be handled excplicitly or they lead to errors.
- So, use of appropriate type is important both for efficiency and correctness.
 - Eg., short int can be used if range restricted to [-2¹⁵, 2¹⁵-1].
 - For positive integers unsigned int is more appropriate.

Mixed mode arithmetic

Data Types

Integer Types

- Basic numeric types: whole numbers (int) & having fractional part (float).
- Two different int types: signed and unsigned
- \bullet Maximum signed int in 16 bit: 0111111111111111, i,e., $2^{15}-1$
- \bullet Maximum unsigned int in 16 bit: 1111111111111111, i.e., $2^{16}-1$
- Possible types to suit our needs are: short int, unsigned short int int, unsigned int, long int, unsigned long int.
- C allows short hand to drop int

Mixed mode arithmetic

Data Types

Floating Point Types

- Different types: float, double, long double
- double is used for precision critical calculations (upto 15 digits against 6 digits).
- By default floating point constants are stored as a double. To force float constant should be suffixed with *f*, i.e., 7.5f or 7.5F.
- Format specifier "%lf', "%Lf' are used for reading double and long double.

Mixed mode arithmetic

Data Types

Details of Different Types

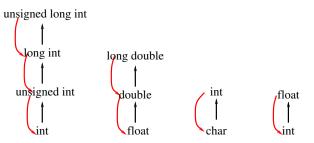
Туре	Size in bytes	Range
char	1	-128 to 127
unsigned char	1	0 to 255
short int	2	-32768 to 32767
unsigned short int	2	0 to 65535
int	4	-214743648 to 214743647
unsigned int	4	0 to 4294967295
float	4 (s+8e+23m)	(approx) \pm [10 ^{-38} , 10 ^{38}]
double	8	(approx) \pm [10 $^{-308}$, 10 308]

Note: for 32-bit m/c long int and int are same.

Mixed mode arithmetic

Data Types

Char Types


- ASCII character set is most widely used: each character requires 7 bits.
- Digits 0-9 represented by 0110000 0111001
- A-Z represented by 1000001 1011010
- Characters are treated as small integers, so it is possible to operate (add, substract, compare) on them.
- For example converting lower case to uppercase:

if ('a' <= ch <= 'z') ch = ch - 'a' + 'A';

-Mixed mode arithmetic

Type Conversions

Coercion Rules

Mixed mode arithmetic

Type Conversions

Example 11

```
char c;
short int s;
int i;
long int l;
unsigned int u;
unsigned long int ul;
float f;
double d;
long double ld;
```

Mixed mode arithmetic

Type Conversions

Example 11 (contd)

i = i + s	// s		to	int
u = u + i				
$ \mathbf{I} = \mathbf{I} + \mathbf{u}$				unsigned long int
f = f + ul				
d = d + f				
Id = Id + d	, ,	•		