C Programming
|—Dynamic Allocation
L Linked Lists

Command Line Argument

@ Sometime additional information (switch) may have to be supplied to
program.

@ Eg. Is -1 uses parameter | for changing its default behavior.

@ Similarly, Is - remind.c: uses parameters | and reminder.c to change
its default behavior.

@ To access command line information in function main two parameters
are added: int main(int argc, char *argv|])

@ argc: argument count.
@ argv[0]: is the name of the program

e argv[l] ... argfargc-1]: are different switches to program.

R. K. Ghosh (IIT-Kanpur) C Programming April 19, 2011 6/8



C Programming
|—Dynamic Allocation
L Linked Lists

Command Line Argument

@ For eg., Is -l reminder.c, has
argument count 3. — n

argv[0] points to string Is

argv[1] points to string -
argv[2] points to string remind.c \% ! ‘ ¢ ‘m‘ i‘ n ‘ d ‘ : ‘ ¢ ‘\0‘
argv[3] is NULL

R. K. Ghosh (IIT-Kanpur) C Programming April 19, 2011 6/8



C Programming
ynamic Allocation
L Dynamic Allocati
L Linked Lists

Command Line Argument

#include <stdio.h>
#include <string .h>
#define NPLANETS 9
int main(int argc, char % argv[]) {

char xplanets[] = {”"Mercury”, "Venus”, "Earth”,
"Mars" , "Jupiter”, "Saturn”,
"Uranus” , " Neptune”, "Pluto” };
int i, j;

/**%% Remaining part of the code xxx/

R. K. Ghosh (IIT-Kanpur) C Programming April 19, 2011

6/8



C Programming
ynamic Allocation
L Dynamic Allocati
L Linked Lists

Command Line Argument

for(i = 1; i < arge; i++) {
for(j = 0; j < NPLANETS; j++)
if(stremp(argv[i], planets[j]) = 0) {
printf("%s-is_planet_No. %d\n", argv[i], j + 1);
break ;

}
if (j = NPLANETS)
printf("%s.is.not_a_planet\n", argv[i]);

R. K. Ghosh (IIT-Kanpur) C Programming April 19, 2011

6/8



C Programming
|—Dynamic Allocation
L Linked Lists

Handling Text Files in C

@ Stream: any source of input or any destination for output.

@ So far only one stream was used for each, namely, keyboard for all
input, and screen for output.

@ Programs may need additional streams often represented by files
stored in HDD, CD/DVD, etc.

@ Also represented by network ports, printer etc which don’t store files.
@ Let us talk about files (which alternate for streams) only.

@ Functions in stdio.h work equally well for any stream not just files.

R. K. Ghosh (IIT-Kanpur) C Programming April 19, 2011 7/8



C Programming
|—Dynamic Allocation
L Linked Lists

Handling Text Files in C

Accessing a stream is done through a file pointer.

Its type is FILE * which is declared in stdio.h

Certain streams are represented by file pointers with standard names.
For other file pointers should be declared: FILE *fpl, *fp2;

Standard file pointers are stdin, stdout, stderr

We neither have to open nor have to close these pointers.

R. K. Ghosh (IIT-Kanpur) C Programming April 19, 2011 7/8



C Programming
ynamic Allocation
L Dynamic Allocati
L Linked Lists

Handling Text Files in C

@ Standard streams can be redirected to get these represented by files
associated with other devices.

@ Input redirection forces the input to be read from a file.

@ Similarly output redirection forces the output to be sent to file.

For example,
program <in.dat >out.dat
takes input from in.dat and throws output to out.dat

R. K. Ghosh (IIT-Kanpur) C Programming April 19, 2011 7/8



C Programming
|—Dynamic Allocation
L Linked Lists

Handling Text Files in C

@ <stdio.h> supports both binary and text files.
@ Text files have following characteristics:

e Divided into lines, each terminated by a linefeed character.

e May contain a special EOF (CTRL-Z), but this not required in Linux.
@ Binary files do not have EOL or EOF, all bytes are treated equally.
@ Bytes will be reversed in m/c that store data in little endian order.
@ When program reads/write data from/to a file, we need to take into

account whether it is a binary/text file.

R. K. Ghosh (IIT-Kanpur) C Programming April 19, 2011 7/8



C Programming
|—Dynamic Allocation
L Linked Lists

Handling Text Files in C

@ A program that displays content of a file onto screen will use a text
file.

@ But a file copying program can not assume file to be copied as a text
file, because on encountering EQOF rest of the file will be ignored.

@ EOF may be just a valid item in the file being copied.

@ So it is safer to assume file to be a binary file.

R. K. Ghosh (IIT-Kanpur) C Programming April 19, 2011 7/8



C Programming
|—Dynamic Allocation
L Linked Lists

Handling Text Files in C

@ Opening a file: fopen("File Name", "mode");
e fopen: returns a file pointer which must be saved for further
operations (read/write).
e File Name: could be complete with full /relative path.
e Mode: read ("r") or write ("w") or read/write ("rw").
@ Closing a file: fclose(fileptr); where fileptr is obtained from
an fopen or freopen.

R. K. Ghosh (IIT-Kanpur) C Programming April 19, 2011 7/8



C Programming
|—Dynamic Allocation
L Linked Lists

Handling Text Files in C

String | Description

"r" Reading
"w" Writing, file need not exist
"a" Append, file need not exist

Reading and writing from beginning
w—+" | Reading and writing (truncate if file exsist)
Reading and writing (append if file exsist)

R. K. Ghosh (IIT-Kanpur) C Programming April 19

, 2011

7/8



C Programming
|—Dynamic Allocation
L Linked Lists

Handling Text

Files in C

String Description

"rb" Reading

"wb" Writing, file need not exist

"ab"” Append, file need not exist

"r+b" /" rb+" Reading and writing from beginning
"w+b" /"wb+" | Reading and writing (truncate if file exsist)
"a+b" /"ab+" | Reading and writing (append if file exsist)

R. K. Ghosh (IIT-Kanpur)

C Programming April 19, 2011

7/8



C Programming
|—Dynamic Allocation
L Linked Lists

Handling Text Files in C

#include <stdio.h>
#include <stdlib.h>
#define FILE.NAME "example.dat”
int main() {
FILE xfptr; // Declare a file pointer
fptr = fopen (FILE.NAME, "r"); // Save the file pointer
if (fptr = NULL) {
printf(”Can_not.open.%s\n" , FILE.NAME);
exit (EXIT_FAILURE);

woofclose(fptr);.//.Close_the_file

}

R. K. Ghosh (IIT-Kanpur) C Programming April 19, 2011 7/8



C Programming
|—Dynamic Allocation
L Linked Lists

Handling Text Files in C

@ freopen attaches a different file to a stream that is already open.

@ Most common use is to attach standard streams: stdin, stdout,
stderr.

o Eg: freopen("myfile", "w", stdout); causes stdout to be
represented by myfile.

@ It closes any file previously associated with stdout then reopens the
same by associating it with myfile.

R. K. Ghosh (IIT-Kanpur) C Programming April 19, 2011 7/8



C Programming
|—Dynamic Allocation
L Linked Lists

Handling Text Files in C
Bample

include <stdio.h>

#include <stdlib.h>

int main(int argc, char xargv[]) {
FILE xfp;

if (arge = 2) {
printf(”Usage:._.can_open.filename\n");
exit (EXIT_FAILURE);

}

if ((fp = fopen(argv[1l], "r")) = NULL) {
printf("%s.can’'t_be_opened\n”, argv[l]);
exit (EXIT_FAILURE);

printf(”"%s.can_be_opened\n", argv[1l]);
fclose (fp);

v

R. K. Ghosh (IIT-Kanpur) C Programming April 19, 2011 7/8



C Programming
|—Dynamic Allocation
L Linked Lists

Advanced File Operations

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char xargv[]) {
FILE xfpsrc, xfpdest;
char ch;

/*%% Code for errors in arguments/opening sxx/

while ((ch = getc(fpsrc)) != EOF)
putc(ch, fpdest);

fclose (fpdest);

fclose (fpsrc);

R. K. Ghosh (IIT-Kanpur) C Programming April 19, 2011 8/8



C Programming
|—Dynamic Allocation
L Linked Lists

Advanced File Operations

if (argec 1= 3) {
fprintf(stderr, "Usage:_fcopy._src_dest\n");
exit (EXIT_FAILURE);

}

if ((fpsrc = fopen(argv[l], "rb"”)) = NULL) {
printf(”"%s.can’'t_be_opened\n”, argv[1l]);
exit (EXIT_FAILURE);

}

if ((fpdest = fopen(argv[2], "wb”)) = NULL) {
printf(”"%s.can’'t_be_opened\n”, argv[2]);
exit (EXIT_FAILURE);

R. K. Ghosh (IIT-Kanpur) C Programming April 19, 2011 8/8



