
C Programming

Strings

Introduction

Handling Character Strings

String Literals

A string literal is enclosed within double quotes.

Eg., format string in calls to printf/scanf.

String literal may contain escape sequences as characters.

#inc l u d e <s t d i o . h>
i n t main () {

char a [] = ”As you sow\nSo , s h a l l \nYou reap \n” ;
p r i n t f (”%s ” , a) ;

}

R. K. Ghosh (IIT-Kanpur) C Programming April 4, 2011 1 / 4

C Programming

Strings

Introduction

Handling Character Strings

String Literals

Hexadecimal and octal escape sequence are also valid.

Octal sequence ends with 3 digit or first non-octal digit, eg.,

”\1234” ≡ ”\123” and ”4” and
”\458” ≡ ”\45” and ”8”.

Hexadecimal sequence not limited by 3 digits, ends on encountering
first non-hexadcimal digit.

R. K. Ghosh (IIT-Kanpur) C Programming April 4, 2011 1 / 4

C Programming

Strings

Introduction

Handling Character Strings

String Literals

Hexadecimal escape sequences should be used with caution.

Eg., \x22 represents ",
But \x22{a-f} could represent valid other characters.
So, how a string of the form "Can ... can be represented?

Partitioning the string literal and writing adjacent to one another is
equivalent to concatenation.

Eg. char a[] = "\x22" "Can you program in C?\x22";
produces ”Can you program in C?”.

R. K. Ghosh (IIT-Kanpur) C Programming April 4, 2011 1 / 4

C Programming

Strings

Introduction

Handling Character Strings

If literal is too long to fit into a line, ”\” is used to partition the
string, but second part must begin from first column of next line, e.g.,
printf("A quick brown fox jumped over \
the lazy dog.");

”\” is used to join two or more lines of code a standard C process of
splicing.

It messes up the program indentation.

So, it is better to use adjacent literal separated by only one white
space, and let compiler to join these strings.

Eg. printf("A quick brown fox jumped over"
"the lazy dog.")

R. K. Ghosh (IIT-Kanpur) C Programming April 4, 2011 1 / 4

C Programming

Strings

Introduction

Handling Character Strings

Operation on Literals

A literals is stored as a null terminated character array, e.g.:

H l \0le o x x x

Can be used wherever char * is allowed.

Eg., a literal can appear in RHS of an assignment: char *p; p =
"abc";

Subscripting on literals is also permitted: ”abc”[1] represents b

R. K. Ghosh (IIT-Kanpur) C Programming April 4, 2011 1 / 4

C Programming

Strings

Introduction

Handling Character Strings

Operation on Literals
A function for converting 0-15 into hexdecimal digit:
#inc l u d e <s t d i o . h>
char conve r tHex (i n t d) {

r e t u r n ”0123456789 abcde f ” [d] ;
}
i n t main () {

i n t n ;
p r i n t f (” Ente r a number 0−15: ”) ;
s c a n f (”%d” , &n) ;
p r i n t f (”%c\n” , conve r tHex (n)) ;

}

scanf treats white space as the end of the string.

Null character \0 is automatically inserted in a string constant.

But, it should be explicitly inserted into a user created string.

R. K. Ghosh (IIT-Kanpur) C Programming April 4, 2011 1 / 4

C Programming

Strings

Introduction

Handling Character Strings

String Variables

C uses 1D null terminated character arrays for string variables.

But such character arrays can also be used in conventional way.

E.g.: char date[9] = "April 17" will be stored as:

A p r i l 1 \07

C views string literals as initilizers.

R. K. Ghosh (IIT-Kanpur) C Programming April 4, 2011 1 / 4

C Programming

Strings

Introduction

Handling Character Strings

String Variables

One could use the following initializer to same effect:
char date[9] = {’A’,’p’,’r’,’i’,’l’,’ ’,’1’,’7’, ’\0’}
But the use of string initializers is simple, it automatically pads null
characters when smaller initializers are provided.

Eg. char date[9] = "May 17" will be stored as:

M a y 1 7 \0 \0 \0

If an initializer is longer, null character will be dropped, and character
array becomes unusable as a string.

R. K. Ghosh (IIT-Kanpur) C Programming April 4, 2011 1 / 4

C Programming

Strings

Introduction

Handling Character Strings

Character Arrays vs. Character Pointers

In a character array, stored elements can be modified.

But the string being pointed to by a pointer is a literal, so it can not
be modified.

Whereas a pointer can be made to point to other literals during
execution.

So, if a string is to be modified, an array should be set aside to store
the same.

Declaration char *p causes compiler to only set memory for storing
address, not space for storing string.

R. K. Ghosh (IIT-Kanpur) C Programming April 4, 2011 1 / 4

C Programming

Strings

Reading and writing strings

Reading and Writing String

Printing Strings

Possible format conversions for printf are "%s" and "%.ns":

Prints characters until hitting ”\0” in first case.
With format "%.ns", prints n characters if string length is > n, the
full string if length < n.

C string library also provides puts for printing strings:

It just takes one argument puts(str)
After printing str, \n is printed.

R. K. Ghosh (IIT-Kanpur) C Programming April 4, 2011 2 / 4

