C Programming
I—Pointers
|—Pointers and Arrays

Pointer Arithmetic

Assume a 2D array a[n] [n] has been initialized properly.

Printing column k could be realized by:

L1 p = &al0];

L2 k = 3;

L3 // prints row O and column 3
L4 for (i = 0; i < n; i++)

L5 printf ("%5d", (x(p+i))[k]);
L6 printf("\n");

Since, a[0] is an address *p stores an address (line L1).

a[0] [0] is the first element of row a[0], similarly, (xp) [0] is the
first element of row zero of array a.

R. K. Ghosh (IIT-Kanpur) C Programming March 30, 2011 4/5

C Programming

L Pointers

|—Pointers and Arrays

Pointer Arithmetic

#include <stdio.h>
int main() {
int a[10][10];
int n = sizeof(a[0])/sizeof(a[0][0]);
int i, j, xptr;
int (xp)[10]; // Column p
for (i = 0; i < n; i++4)
for (j = 0, ptr = ali]; ptr < al[i] + n; ptr++, j++)
xptr = i + j;
i = 5;
for (p = &a[0]; p <&a[n]; p++)
(xp)[i] = 0;
for (i = 0; i < n; i++) {
for (ptr = ali]; ptr < a[i] + n; ptr++4)
printf(”"%5d”, xptr);
printf(”"\n");
}
}
R. K. Ghosh (IIT-Kanpur) C Programming March 30, 2011 4/5

C Programming
|—Pcvinters
LPointers and Arrays

Pointer Arithmetic

@ In order to use a pointer as a 2D array, first a memory block should
be set aside.

@ void *malloc(size*sizeof (type)) used for this: allocates space
for an object whose size in bytes is an argument to malloc.

@ On successful allocation it return a void pointer to allocated space,
otherwise null pointer is returned.

@ Using malloc we allocate storage for an array of element of type T in
memory and return a pointer to the array.

@ Then the pointer can be used as a 2D array.
@ After using the space, the space should be deallocated.

@ Deallocation is done by calling free (ptr)

R. K. Ghosh (IIT-Kanpur) C Programming March 30, 2011 4/5

C Programming
|—Pclim:ers
|—Pointers and Arrays

Pointer Arithmetic

#include <stdio.h>

#include <stdlib.h>

int main() {
int i, j, a[5][5];
int n = sizeof(a[0])/sizeof(a[0][0]), m = nxn;
int (xpa)[m];

pa = malloc(mxsizeof(int)); // Returns a void pointer
for (i = 0; i < n; i=i++)
for (j =0; j <n; j++)
palilli] = i+]
printf(”"2D_array_with_pointer\n");
for (i = 0; i < n; i++) {

for (j = 0; j < n; j4+4)
printf("%5d”, pal[il[il);
printf(”"\n");

R. K. Ghosh (IIT-Kanpur) C Programming March 30, 2011

4/5

C Programming
I—Pointers
|—Pointers and Arrays

Summary and Pitfalls

int i;
int xip; // declaring a pointer variable of a given type

ip = &i; // assigning address to a pointer variable
/xassigning value to variable to which a pointer

* variable points to x/
*ip = 15;

o Use & to get address of a variable.
@ Use * To get value of a variable referenced by a pointer

@ Use * to declare a pointer variable.

R. K. Ghosh (IIT-Kanpur) C Programming March 30, 2011

5/5

C Programming
|—Pcvinters
LPointers and Arrays

Summary and Pitfalls

void exchange (int *a, int *Db)

int temp = *a;

S = s modify the values
! at the addresses

} *b = temp;

int main() { send address of i
:_"nt = L5 send address of j
int j = 25;

exchange (&1, &3);
printf ("$5d%5d\n", i,

3);

{

R. K. Ghosh (IIT-Kanpur) C Programming

March 30, 2011

5/5

C Programming
LPuinters
LPointers and Arrays

Summary and Pitfalls

No attempt be made to dereference an unassigned pointer. It causes im-
mediate crash. Eg:

int *p;

*p = 25; //physical location needed

Using pointer variable before assigning Ivalue, would cause eventual crash.

int x;

int *px;

*px = x; // No address is assigned to px yet.

R. K. Ghosh (IIT-Kanpur) C Programming March 30, 2011 5/5

C Programming
|—Pcvin'ters
LPointers and Arrays

Summary and Pitfalls

Following two are not equivalent increments

*p += 1; // increment value
*p++; // increments address

Following two assignment are legal but have different meanings.

*p=*q;
| S

R. K. Ghosh (IIT-Kanpur) C Programming

March 30, 2011

5/5

