Function Calling Itself

- Certain problems naturally lend themselves to recursion.
- Eg. factorial. X^n , sum of n numbers.
- Solves a problem by
 - Reducing it an instance of the same problem with smaller input.
 - 2 Having a smallest instance that can be computed directly without making calls to itself.
- So it has two parts:
- Base case
- Recursive step

Connection with Induction

- Induction has a base case and inductive step
- Basis is directly proved.
- Inductive step relies on the assumption that smaller instance is already solved.
- Eg. prove $1 + 2 + 2^2 + \ldots + 2^n = 2^{n+1} 1$
- $2^n < n!$ for $n \ge 4$.

Connection with Induction

Weak induction

- Base case: Given $P(n_0)$ is true.
- Induction step: for all $k \ge n_0$, $P(k) \implies P(k+1)$

Strong induction

- Base case: Given $P(n_0)$ is true.
- Induction step: for all $k \ge n_0$ $(P(n_0) \land P(n_0 + 1) \land \dots \land P(k)) \implies P(k + 1)$
- Strong Induction can be derived from Weak Induction.
- Reaching the top from the middle of a ladder is impossible unless all rungs of the ladder can be reached from the bottom.

Strong Induction

- Why strong induction is necessary?
- Consider of breaking a chocolate: mn-1 breakings necessary for a mn sized chocolate.
- \bullet P(1) is true: no breaking is necessary for a single piece.
- For P(mn): breaking once, we get pieces of size m_0n_0 and m_1n_1 .
- ullet To prove the hypothesis: both $P(m_0n_0)$ and $P(m_1n_1)$ are needed.
- Prove by Weak Induction not possible.
- Recursion is based on the idea of SI.

Strong Induction

• For a +ve integer n, $2^n \times 2^n$ chess board with any 1 square removed can be tiled with right triominoes.

Strong Induction

- Basis: P(1) true.
- **Hypothesis**: P(k) be true.
- Induction Step: consider P(k+1).
 - Divide C into 4 boards of size $2^k \times 2^k$.
 - Place a triomino so it covers one tile each of P, Q, R.
 - Now apply induction on each of the 4 boards.