C Programming
|—Loups and Repetitive Computations

LComputer Representation of Numbers

Floating Point Numbers

@ Suppose use 3 bit exponent and 4 bit mantissa, and we want to
represent 80.
With 4-bit normalized mantissa

e maximum value: .1111 = .5 + .25 + .125 4 .0625 = .9375
e minimum value: .1000 = .5

@ Since mantissa < 1 and 2% = 64 < 80, the exponent should be 27 =
128.

128 x .6875 (1011) = 88 > 80, so, mantissa which can take us near
80: .1001 = .5625 and .1000 = .5.

e However, both 128x .5 (=64), 128 x .5625 (=72) are less than 80.

R. K. Ghosh (IIT-Kanpur) C Programming February 13, 2011 9 /10

C Programming
|—Loups and Repetitive Computations
LComputer Representation of Numbers

Floating Point Numbers

underflow

ole
A1x2-1 l.lxrl/ll.IXZO ‘ ‘

T
0 | |
00x2! 1.Ox21 1 ox00 1 x2! 1.1x2!

‘ ‘

‘ } } ‘ effects of rounding

increases reduces

effects of truncation

reduces

R. K. Ghosh (IIT-Kanpur) C Programming February 13, 2011

9/ 10

C Programming
|—Loups and Repetitive Computations
LComputer Representation of Numbers

Floating Point Numbers

@ Spacing between floating point numbers is not uniform.

o Eg., .1 x 2! — .11 x 2! = 5 which much smaller compared to
A1 x 2127 — 1 x 2127 = 4.25353x10%7.

e But if difference expressed with relative to corresponding numbers then
they are the same (.5 times).

@ The Least possible exponent is -126, so underflow occurs in interval
—27126 gnd 27126,

overflow underﬂow overflow
\/P\N - M /
127 127
2 _2_127 0 2—127 2

R. K. Ghosh (IIT-Kanpur) C Programming February 13, 2011 9 /10

C Programming
|—Loups and Repetitive Computations

LComputer Representation of Numbers

Floating Point Numbers

No value in the said interval can be represented except for 0.
_9ol27 9127

and also beyond

Similarly overflow occurs after

Mantissa is restricted to 23 bits, so there is a gap between any two
successive floating point number.

Rounding-off occurs if exact value of a calculation can not be
represented.

R. K. Ghosh (IIT-Kanpur) C Programming February 13, 2011 9 /10

C Programming
LLoops and Repetitive Computations
LComputer Representation of Numbers

Examples
Number Sign | Exponent in | Mantissa
bit excess 16
x = 0.0001101001101 x 2° | O 0000 000110100
x = 0.001101001101 x 2=1 [0 1111 001101000
x = 0.01101001101 x 272 0 1110 011010000
2 =0.1101001101 x 273 0 1101 110100000
2 = 1.101001101 x 2—* 0 1100 101000000

An implied 1.0 exists, and by normalization highest precision is achieved.

@ Biased exponent or excess representation achieves two important
simplification.
e No need to deal with sign of the exponent, i.e., 2's complement
representation is avoided.
e Integer sorting can be used to simplify the comparison of exponents.

R. K. Ghosh (IIT-Kanpur) C Programming February 13, 2011 10 /10

C Programming

LLoops and Repetitive Computations

LComputer Representation of Numbers

be:

Examples
With excess 16 representation 5-bit exponent field (range —2%: 24 — 1) will
Exponent | 2's complement | Biased notation | Value in excess-16
15 01111 11111 31
14 01110 11110 30
1 00001 10001 17
0 00000 10000 16
-1 11111 01111 15
-15 10001 00001 1
-16 10000 00000 0

R. K. Ghosh (IIT-Kanpur)

C Programming

February 13, 2011

10 / 10

C Programming
|—Loups and Repetitive Computations
LComputer Representation of Numbers

Examples
@ Let us represent -0.75 in biased notation with e = 5 bits.
@ -0.7510 = -0.115 = (1.1 x 271),
@ Biased exponent = -1 + 16 = 15.
e Without implied 1: the representation is 1 | 10000 | 1100...

With implied 1: the representation is 1 | 01111 | 1000...

R. K. Ghosh (IIT-Kanpur) C Programming February 13, 2011 10 /10

C Programming
|—Arrays
L Introduction

Arrays

@ A collection of similar elements each of which may require same type
of processing

@ Basic advantage: lets us use one variable to access all elements
systematically.

@ Conceptually analogous to mathematical abstractions such as table,
vectors, matrices.

@ The individual elements can be accessed by associating indices to
variable name.

R. K. Ghosh (IIT-Kanpur) C Programming February 14, 2011 1/4

C Programming
|—Arrays
L Introduction

Arrays

@ 1-D array declared as: int a[8];

a— 10 | 20 |30 | 40 | 50 | 60|70 | 80
alO0lalllal2]lal3]lal4lalblale] al7]

@ Array size is important in declaration.

@ Size can be specied either as shown above or as follows:

#define N 9

int a[N]

R. K. Ghosh (IIT-Kanpur) C Programming February 14, 2011

1/4

C Programming
|—Arrays
L Introduction

Arrays

@ Each element a[i] is treated as int type.

Array bound is not checked.

So, a[9] may have side-eects as indicated below.

int a[8];
int 1i;

_ may result in i
@ ~_]
a—>10‘20‘30‘40‘50‘60‘70‘80‘0‘

0llalllal2]al3]al4]al5]lal6lal’]]

R. K. Ghosh (IIT-Kanpur) C Programming February 14, 2011

a[i] is an lvalue, so it can be used in same way as a scalar variable.

1/4

C Programming
|—Arrays
L Introduction

Arrays

@ Care must be taken in using expression for indices.

@ Eg., in the following code, assignment to non-existing a[10] causes an

overwrite on the next available memory location or i.

int a[10];

int i = 0;

while (i <= 0) {
al[i] = 0; // Causes and overwrite at i for i=10
i++;

}

@ An innite loop results due to overwrite on location i.

@ So, be careful when loop index has a side-effect.

R. K. Ghosh (IIT-Kanpur) C Programming February 14, 2011

1/4

C Programming
|—Arrays
L Introduction

Arrays

#include <stdio.h>
#define N 10
int main() {
double a[N];
int i;
for (i = 0; i < N; i++4)
scanf("%If", &a[i]); // read N elements one by one
for (i = N-1; i > 0; i—)
printf("%.3f_.." al[il); // print in reverse order
pritf("\n");
}

R. K. Ghosh (IIT-Kanpur) C Programming February 14, 2011 1/4

C Programming
|—Arrays

L Initializations

Array Initialization

Like other scalar variables, array can also be initized.

/* Initial values are: a[0] = 1, a[l] = 2 %
x af2] = 3, a[3] = 4 and a[4] =5 %/

int a[5] = {1, 2, 3, 4, 5};

/% Initial values are: a[5] to a[9] = 0 x/
int a[10] = {1, 2, 3, 4, 5};
/* Initial values are: a[0] to a[9] = 0 x/

int a[10] = {0};

/* Array length determined by initializer x/

int a[] = {1, 2, 3, 4, 5}

R. K. Ghosh (IIT-Kanpur) C Programming February 14, 2011

2/4

C Programming
|—Arrays

L Initializations

Array Initialization

@ Suitable for arrays having few non zero elements

@ Example below shows how an array of 15 elements having only 3 non

zero elements can be initialized.

/* Designated intializers x/
int a[15] = {[3] = 19, [12] = 14, [13] = 23}
/* Length determined by larged designated initializer x/

int a[] = {[3] = 19, [12] = 14, [30] = 23}

R. K. Ghosh (IIT-Kanpur) C Programming February 14, 2011

2/4

