- Loops and Repetitive Computations
 - Computer Representation of Numbers

Floating Point Numbers

Problem in Representing Exact Value

- Suppose use 3 bit exponent and 4 bit mantissa, and we want to represent 80.
- With 4-bit normalized mantissa
 - maximum value: .1111 = .5 + .25 + .125 + .0625 = .9375
 - minimum value: .1000 = .5
- Since mantissa <1 and $2^6=64<80,$ the exponent should be $2^7=128.$
- $128 \times .6875 (1011) = 88 > 80$, so, mantissa which can take us near 80: .1001 = .5625 and .1000 = .5.
- \bullet However, both 128 \times .5 (=64), 128 \times .5625 (=72) are less than 80.

Loops and Repetitive Computations

Computer Representation of Numbers

Floating Point Numbers

Problem in Representing Exact Value

Loops and Repetitive Computations

Computer Representation of Numbers

Floating Point Numbers

Underflow, Overflow & Rounding Off

- Spacing between floating point numbers is not uniform.
 - Eg., $.1 \times 2^1 .11 \times 2^1 = .5$ which much smaller compared to $.11 \times 2^{127} .1 \times 2^{127} = 4.25353 \times 10^{37}$.
 - But if difference expressed with relative to corresponding numbers then they are the same (.5 times).
- The Least possible exponent is -126, so underflow occurs in interval $-2^{-126} \ {\rm and} \ 2^{-126}.$

Loops and Repetitive Computations

Computer Representation of Numbers

Floating Point Numbers

Underflow, Overflow & Rounding Off

- No value in the said interval can be represented except for 0.
- Similarly overflow occurs after -2^{127} and also beyond 2^{127} .
- Mantissa is restricted to 23 bits, so there is a gap between any two successive floating point number.
- Rounding-off occurs if exact value of a calculation can not be represented.

C Programming

Loops and Repetitive Computations

Computer Representation of Numbers

Examples

Number	Sign	Exponent in	Mantissa
	bit	excess 16	
$x = 0.0001101001101 \times 2^0$	0	0000	000110100
$x = 0.001101001101 \times 2^{-1}$	0	1111	001101000
$x = 0.01101001101 \times 2^{-2}$	0	1110	011010000
$x = 0.1101001101 \times 2^{-3}$	0	1101	110100000
$x = 1.101001101 \times 2^{-4}$	0	1100	10100000

An implied 1.0 exists, and by normalization highest precision is achieved.

- Biased exponent or excess representation achieves two important simplification.
 - No need to deal with sign of the exponent, i.e., 2's complement representation is avoided.
 - Integer sorting can be used to simplify the comparison of exponents.

C Programming

Loops and Repetitive Computations

Computer Representation of Numbers

Examples

With excess 16 representation 5-bit exponent field (range $-2^4: 2^4 - 1$) will be:

Exponent	2's complement	Biased notation	Value in excess-16
15	01111	11111	31
14	01110	11110	30
•	÷	:	÷
1	00001	10001	17
0	00000	10000	16
-1	11111	01111	15
:	÷	:	÷
-15	10001	00001	1
-16	10000	00000	0

- Loops and Repetitive Computations
 - Computer Representation of Numbers

Examples

- Let us represent -0.75 in biased notation with e = 5 bits.
- $-0.75_{10} = -0.11_2 = (-1.1 \times 2^{-1})_2$
- Biased exponent = -1 + 16 = 15.
- Without implied 1: the representation is 1 | 10000 | 1100...
- With implied 1: the representation is 1 | 01111 | 1000...

C Programming	
Arrays	

Why Arrays?

- A collection of similar elements each of which may require same type of processing
- Basic advantage: lets us use one variable to access all elements systematically.
- Conceptually analogous to mathematical abstractions such as table, vectors, matrices.
- The individual elements can be accessed by associating indices to variable name.

C Programming	
Arrays	

One Dimensional Array

• 1-D array declared as: int a[8];

a —>	10	20	30	40	50	60	70	80
ä	a[0]	a[1]	a[2]	a[3]	a[4]	a[5]	a[6]	a[7]

- Array size is important in declaration.
- Size can be specied either as shown above or as follows:

```
#define N 9
:
int a[N]
```

C Programming
Arrays
Introduction

One Dimensional Array

- a[i] is an **lvalue**, so it can be used in same way as a scalar variable.
- Each element a[i] is treated as int type.

Important Points

- Array bound is not checked.
- So, a [9] may have side-eects as indicated below.

C Programming
Arrays

Expression for Array Indices

- Care must be taken in using expression for indices.
- Eg., in the following code, assignment to non-existing a[10] causes an overwrite on the next available memory location or i.

```
int a[10];
int i = 0;
while (i <= 0) {
    a[i] = 0; // Causes and overwrite at i for i=10
    i++;
}
```

- An innite loop results due to overwrite on location i.
- So, be careful when loop index has a side-effect.

C Programming	
Arrays	

Reading and Printing

```
#include <stdio.h>
#define N 10
int main() {
    double a[N];
    int i;
    for (i = 0; i < N; i++)
        scanf("%lf", &a[i]); // read N elements one by one
    for (i = N-1; i > 0; i--)
        printf("%.3f____" a[i]); // print in reverse order
    pritf("\n");
}
```

С	Programming	
L	- Arrays	

Initializations

Array Initialization

Some Examples

Like other scalar variables, array can also be initized.

С	Programming
L	- Arrays
	Initializations

Array Initialization

Designated Initializer

- Suitable for arrays having few non zero elements
- Example below shows how an array of 15 elements having only 3 non zero elements can be initialized.

/* Designated intializers */

int $a[15] = \{[3] = 19, [12] = 14, [13] = 23\}$

/* Length determined by larged designated initializer */

int $a[] = \{[3] = 19, [12] = 14, [30] = 23\}$