
C Programming

Loops and Repetitive Computations

Computer Representation of Numbers

Floating Point Numbers

Problem in Representing Exact Value

Suppose use 3 bit exponent and 4 bit mantissa, and we want to
represent 80.

With 4-bit normalized mantissa

maximum value: .1111 = .5 + .25 + .125 + .0625 = .9375
minimum value: .1000 = .5

Since mantissa < 1 and 26 = 64 < 80, the exponent should be 27 =
128.

128 × .6875 (1011) = 88 > 80, so, mantissa which can take us near
80: .1001 = .5625 and .1000 = .5.

However, both 128× .5 (=64), 128 × .5625 (=72) are less than 80.

R. K. Ghosh (IIT-Kanpur) C Programming February 13, 2011 9 / 10



C Programming

Loops and Repetitive Computations

Computer Representation of Numbers

Floating Point Numbers

Problem in Representing Exact Value

   −10.0x2

.1x2 −1

1.0x2   −1

1.1x2   −1    0

   0

1.1x2

1.0x2   1 1.1x2   1

hole
underflow

0

1.0x2

reduces

effects of truncation

reducesincreases

effects of rounding

R. K. Ghosh (IIT-Kanpur) C Programming February 13, 2011 9 / 10



C Programming

Loops and Repetitive Computations

Computer Representation of Numbers

Floating Point Numbers

Underflow, Overflow & Rounding Off

Spacing between floating point numbers is not uniform.

Eg., .1× 21 − .11× 21 = .5 which much smaller compared to
.11× 2127 − .1× 2127 = 4.25353×1037.
But if difference expressed with relative to corresponding numbers then
they are the same (.5 times).

The Least possible exponent is -126, so underflow occurs in interval
−2−126 and 2−126.

0

overflow overflowunderflow

−2
127

2
−127 2

127

−2
−127

R. K. Ghosh (IIT-Kanpur) C Programming February 13, 2011 9 / 10



C Programming

Loops and Repetitive Computations

Computer Representation of Numbers

Floating Point Numbers

Underflow, Overflow & Rounding Off

No value in the said interval can be represented except for 0.

Similarly overflow occurs after −2127 and also beyond 2127.

Mantissa is restricted to 23 bits, so there is a gap between any two
successive floating point number.

Rounding-off occurs if exact value of a calculation can not be
represented.

R. K. Ghosh (IIT-Kanpur) C Programming February 13, 2011 9 / 10



C Programming

Loops and Repetitive Computations

Computer Representation of Numbers

Examples

Number Sign
bit

Exponent in
excess 16

Mantissa

x = 0.0001101001101× 20 0 0000 000110100
x = 0.001101001101× 2−1 0 1111 001101000
x = 0.01101001101× 2−2 0 1110 011010000
x = 0.1101001101× 2−3 0 1101 110100000
x = 1.101001101× 2−4 0 1100 101000000

An implied 1.0 exists, and by normalization highest precision is achieved.

Biased exponent or excess representation achieves two important
simplification.

No need to deal with sign of the exponent, i.e., 2’s complement
representation is avoided.
Integer sorting can be used to simplify the comparison of exponents.

R. K. Ghosh (IIT-Kanpur) C Programming February 13, 2011 10 / 10



C Programming

Loops and Repetitive Computations

Computer Representation of Numbers

Examples

With excess 16 representation 5-bit exponent field (range −24 : 24− 1) will
be:

Exponent 2’s complement Biased notation Value in excess-16

15 01111 11111 31

14 01110 11110 30
...

...
...

...

1 00001 10001 17

0 00000 10000 16

-1 11111 01111 15
...

...
...

...

-15 10001 00001 1

-16 10000 00000 0

R. K. Ghosh (IIT-Kanpur) C Programming February 13, 2011 10 / 10



C Programming

Loops and Repetitive Computations

Computer Representation of Numbers

Examples

Let us represent -0.75 in biased notation with e = 5 bits.

-0.7510 = -0.112 = (−1.1× 2−1)2
Biased exponent = -1 + 16 = 15.

Without implied 1: the representation is 1 | 10000 | 1100. . .

With implied 1: the representation is 1 | 01111 | 1000. . .

R. K. Ghosh (IIT-Kanpur) C Programming February 13, 2011 10 / 10



C Programming

Arrays

Introduction

Arrays

Why Arrays?

A collection of similar elements each of which may require same type
of processing

Basic advantage: lets us use one variable to access all elements
systematically.

Conceptually analogous to mathematical abstractions such as table,
vectors, matrices.

The individual elements can be accessed by associating indices to
variable name.

R. K. Ghosh (IIT-Kanpur) C Programming February 14, 2011 1 / 4



C Programming

Arrays

Introduction

Arrays

One Dimensional Array

1-D array declared as: int a[8];

a[0]

a 20 50 60 70 80403010

a[1]a[2] a[4]a[3] a[5]a[6] a[7]

Array size is important in declaration.

Size can be specied either as shown above or as follows:

#define N 9
...
int a[N]

R. K. Ghosh (IIT-Kanpur) C Programming February 14, 2011 1 / 4



C Programming

Arrays

Introduction

Arrays

One Dimensional Array

a[i] is an lvalue, so it can be used in same way as a scalar variable.

Each element a[i] is treated as int type.

Important Points

Array bound is not checked.

So, a[9] may have side-eects as indicated below.

a[0]

a 20 50 60 70 80403010

i

0

int i;

may result in

a[1]a[2]a[3]a[4]a[5]a[6]

a[8] = 0

int a[8];

a[7]

R. K. Ghosh (IIT-Kanpur) C Programming February 14, 2011 1 / 4



C Programming

Arrays

Introduction

Arrays

Expression for Array Indices

Care must be taken in using expression for indices.

Eg., in the following code, assignment to non-existing a[10] causes an
overwrite on the next available memory location or i.

i n t a [ 1 0 ] ;
i n t i = 0 ;
wh i l e ( i <= 0) {

a [ i ] = 0 ; // Causes and o v e rw r i t e at i f o r i =10
i ++;

}

An innite loop results due to overwrite on location i.

So, be careful when loop index has a side-effect.

R. K. Ghosh (IIT-Kanpur) C Programming February 14, 2011 1 / 4



C Programming

Arrays

Introduction

Arrays

Reading and Printing
#inc l u d e <s t d i o . h>
#de f i n e N 10
i n t main ( ) {

double a [N ] ;
i n t i ;

f o r ( i = 0 ; i < N; i++)
s c an f ( ”%l f ” , &a [ i ] ) ; // read N e l ement s one by one

f o r ( i = N−1; i > 0 ; i−−)
p r i n t f ( ”%.3 f ” a [ i ] ) ; // p r i n t i n r e v e r s e o r d e r

p r i t f ( ”\n” ) ;
}

R. K. Ghosh (IIT-Kanpur) C Programming February 14, 2011 1 / 4



C Programming

Arrays

Initializations

Array Initialization

Some Examples
Like other scalar variables, array can also be initized.
/∗ I n i t i a l v a l u e s a r e : a [ 0 ] = 1 , a [ 1 ] = 2 ∗
∗ a [ 2 ] = 3 , a [ 3 ] = 4 and a [ 4 ] = 5 ∗/

i n t a [ 5 ] = {1 , 2 , 3 , 4 , 5} ;

/∗ I n i t i a l v a l u e s a r e : a [ 5 ] to a [ 9 ] = 0 ∗/

i n t a [ 1 0 ] = {1 , 2 , 3 , 4 , 5} ;

/∗ I n i t i a l v a l u e s a r e : a [ 0 ] to a [ 9 ] = 0 ∗/

i n t a [ 1 0 ] = {0} ;

/∗ Array l e n g t h de te rm ined by i n i t i a l i z e r ∗/

i n t a [ ] = {1 , 2 , 3 , 4 , 5}

R. K. Ghosh (IIT-Kanpur) C Programming February 14, 2011 2 / 4



C Programming

Arrays

Initializations

Array Initialization

Designated Initializer

Suitable for arrays having few non zero elements

Example below shows how an array of 15 elements having only 3 non
zero elements can be initialized.

/∗ Des igna ted i n t i a l i z e r s ∗/

i n t a [ 1 5 ] = { [ 3 ] = 19 , [ 1 2 ] = 14 , [ 1 3 ] = 23}

/∗ Length de te rm ined by l a r g e d d e s i g n a t e d i n i t i a l i z e r ∗/

i n t a [ ] = { [ 3 ] = 19 , [ 1 2 ] = 14 , [ 3 0 ] = 23}

R. K. Ghosh (IIT-Kanpur) C Programming February 14, 2011 2 / 4


