Variable Scope

Summary of Scope Rules

- int i and int j have file scope from the point of their respective declarations.
- Declarations int i in fand g take precedence and have block scope.
- Function h accesses global variables i and j
- Declaration within if inside function g has inner block scope.

One's Complement

Adding numbers

- A negative number is represented in 1 's complement.
- 103: 01100111 and -97: -01100001
- Addition:

Number	1's complement
carry row	111111100
103	01100111
-97	10011110
result	00000101
	1
result	00000110

- Removing carry bit and adding it to result, produces 0000110.

C Programming

$L_{\text {Loops and Repetitive Computations }}$
$L_{\text {Computer Representation of Numbers }}$

One's Complement

Adding numbers

- 53: 00110101 and 47: 00101111
- Addition of -53 and -47 :

Number	1's complement
carry row	110000000
-53	11001010
-47	11010000
result	10011010
	1
result	10011011

- Removing carry bit and adding it to result, produces 10011011 which is a negative number.
- So, the number is $-01100100=-(64+32+4)=-100$.

C Programming

Loops and Repetitive Computations
$L_{\text {Computer Representation of Numbers }}$

One's Complement

Problem with 1's complement

- 0 has two representations 11111111 and 00000000
- Requires carry to be added to the result.
- 1's complement does not work for multiplication.
- The complements of negative numbers must be determined and product of complement must be obtained first.
- Sign of each number must be known in advance to determine the sign of the product.

Two's Complement

- Positive numbers upto $2^{n-1}-1$ can be represented with n bits.
- To find two complement of a negative number:
- Obtain binary representation of magnitude
- Find 1 's complement of the resulting binary number.
- Add 1 to the above binary number.
- To find magnitude of a two's complement:
- Determine 1's complement of the complement number.
- Add 1 to the above binary number.

Two's Complement

Carry is Ignored in Addition

- Notice that:

$$
X+(-Y)=X+\left(2^{B}-Y\right)=2^{B}-(Y-X)=X-Y
$$

- Eg: consider adding -53 and -47.

$$
\begin{aligned}
-00110101+(-00101111) & =(11001011)_{t c}+(11010001)_{t c} \\
& =(10011100)_{t c}
\end{aligned}
$$

Note: carry is ignored in 2's compelement addition.

- So, magnitude is $01100011+1=01100100=100_{10}$.

Two's Complement

Example

Multiplication is simple in two's complement.

-12	$:$	11110100
8	$:$	00001000
Result	$:$	11110100000

- Drop bit 9 and beyond to get the result 10100000 .
- Since the leftmost bit is 1 , result is negative
- Magnitude is $01011111+1=01100000=32+64=96$.

Two's Complement

Why It Works?

- 2 's complement of negative number $-X: 2^{B}-X$.
- Let X and Y be positive, so

$$
-X * Y=\left(2^{B}-X\right) * Y=2^{B} * Y-(X * Y)
$$

- $B+1$ bits are needed for 2^{B}, so, $2^{B} * Y$ is can be represented by bits in position $B+1$ th and beyond.
- Therefore, if we drop all bits after bit position B, we are left with $-(X * Y)$.
- So, multiplying the two's complement of X by Y is same as multiplying X by Y and then taking the two's complement.

Loops and Repetitive Computations
$\square_{\text {Computer Representation of Numbers }}$

Floating Point Numbers

Real numbers

- Numbers represented in a computer are limited by word size.
- If some bits are used for fraction, then only limited real numbers can be represented.
- A compact scientific representation is: $f \times b^{k}$.
- Floating point numbers use this form, separating significant digits from the magnitude.
- A fractional part consisting of significant digits would need few bits.
- The fractional part is multiplied with b^{k} provides near approximation to a desired real number.

Floating Point Numbers

Real Numbers

- For computer representation $b=2$, thus, the format of a floating point number is: sign bit 8-bit exponent 23-bit mantissa
- Exponent is stored in excess 127, i.e., stored exponent is 127 more than actual exponent.
- I.e., a stored value of 1 means exponent value is -126 .
- The range is $\pm 2^{-127}, \pm 2^{127}$, or $\pm 10^{-38}, \pm 10^{38}$.

Loops and Repetitive Computations
$\square_{\text {Computer Representation of Numbers }}$

Floating Point Numbers

Normalized Form

- The exponent is adjusted until the left most digit in fraction is nonzero.
- MSB of mantissa is always 1 due to above adjustment, so it can be shifted left by one bit to allow 1 extra bit of precision.
- Increasing exponent: reduces the magnitude of the fractional part.
- Having leading zeros amounts to dropping of one or more digits from a fixed sized fraction.
- After a calculation if the left most digit $=0$, the exponent is decreased to eliminate leading zeros.

