C Programming

L Functions

Functions in C

return-value-type function_name (paramter-list) {
declarations
statements

Function name is an identifier.
Return type is any valid C type or void.
Parameters to function specified by a comma separated list.

The declaration of a function which excludes its body is called a
function prototype

R. K. Ghosh (IIT-Kanpur) C Programming February 7, 2011

1/4

C Programming

L Functions

Functions in C

@ Only one function with a given name is allowed
@ A function returns (control restored back to caller) when either
e A return is encounter during execution of the function code, or
e The control reaches end of the function body
o C allows function calls even if argument types do n't match with
corresponding parameter types.
@ The rules for type conversion of arguments depends on whether

function prototype is encountered not prior to call or not.

R. K. Ghosh (IIT-Kanpur) C Programming February 7, 2011

1/4

C Programming

L Functions

Functions in C

Prototype seen prior to call Prototype not seen priort to call

e Each argument implicitly
converted into type of
corresponding parameter as if by
assignment

@ Default argument promotion is
performed.

@ float coverted to double

e Eg., int type converted to @ Integral promot|.c>n are
double if function expects performed, causing short or
double char converted to int

R. K. Ghosh (1IT-Kanpur) C Programming February 7, 2011 1/4

C Programming

L Functions

Functions in C

@ Relying on default promotion is dangerous.

#include <stdio.h>
int main() {
double x = 5.0;

/* No protype seen. Not known if int is expected. x
* Default promotion to double is of no effect *
* Result is undefined */

printf(”"squre_of .%.5f_=_%.5f\n", x, square(x));
}
int square(int n) {
return n x n
}

R. K. Ghosh (IIT-Kanpur) C Programming February 7, 2011

1/4

C Programming
L Functions

Functions in C

#include <stdio.h>
void factorial () {
int n, result = 1;
printf(”Enter_n:.");
scanf("%d”, &n);
printf("%d! _=.", n);
while (n > 0) {
result = result * n;
n——;

}
printf("%d\n", result);
}

int main() {
factorial ();
}

R. K. Ghosh (IIT-Kanpur) C Programming

February 7, 2011

1/4

C Programming

L Functions

Functions in C

@ Void is not a type.
@ Syntactically it is used where a type name is expected.
@ When used for parameter-1list: function does require any
parameters.
o Eg., int function(void) is same as int function().
@ If return type not mentioned function always returns int, i.e.
function() same as int function()

R. K. Ghosh (IIT-Kanpur) C Programming February 7, 2011

1/4

C Programming

L Functions

Functions in C

@ Void type introduced so that compiler can issue a warning when a

function does not return an integer type if that is supposed to return
one.

@ A variable declared void is useless.

e But, void * defines generic pointer. (Any pointer can be cast to void
pointer and back without loss of information)

R. K. Ghosh (IIT-Kanpur) C Programming February 7, 2011 1/4

C Programming
L Functions

Functions in C

#include <stdio.h>
int factorial(int n) {

int result = 1;

while ((n >0) {
result = result * n;
n——;

}

}

int main() {

int n;

printf(”Enteron:.");

scanf("%d", &n);
printf("%d!_=%d\n", factorial(n));

R. K. Ghosh (IIT-Kanpur) C Programming

February 7, 2011

1/4

C Programming

L Functions

Functions in C

Problem: convert a decimal number n to its binary equivalent ny.

@ Partition n into sum of

powers of 2, eg., 67 = 23 i:(])
26421 4 20, |
@ Binary equivalent of 67
will have 1's in bth, 1st
and Oth bit positions. o

return r

R. K. Ghosh (IIT-Kanpur) C Programming February 7, 2011 1/4

C Programming
L Functions

Functions in C

#include <stdio.h>
int binaryNumber(int n) {
int r =0, s =1;

while (n!=0) {
if (n%2 1= 0)

r =r + s;
s=s*10;
n=n/2;
}
return r;
}
int main() {
printf(”"Binary._.of %d.is . %d\n",
}

58, binaryNumber(58));

R. K. Ghosh (IIT-Kanpur)

C Programming

February 7, 2011

1/4

