Common Instructions

1) Model all mathematical functions as C functions
2) You can use programs from previous labs or from lecture notes
(20 Marks)
Q1 Define an operation sqn as follows:
Take a number and calculate the sum of the squares of its digits.
Create a function that performs this operation on a number k times.
It is a mathematical fact that starting from any arbitary positive integer n, if we keep on applying the above operation, we shall eventually get either 1 or 89 .
For example
$\operatorname{sqn}(17)=50, \operatorname{sqn}(50)=25, \operatorname{sqn}(25)=29, \operatorname{sqn}(29)=85, \operatorname{sqn}(85)=89$
Hence, if you did the operation $\mathrm{k}=5$ times, you would have got 89 .
Verify that after 5 repetitions on 17, you get 89.
(30 Marks)
Q2 Recall Week 3 optional problem. A perfect number is a positive integer that is the sum of its proper positive divisors, that is, the sum of the positive divisors excluding the number itself.
The first perfect number is 6 , because 1,2 , and 3 are its proper positive divisors, and $1+2+3=6$.
The next perfect number is $28=1+2+4+7+14$.
Write a function which returns 1 if a given number is a Perfect number, and 0 otherwise. Use this function to find the smallest Perfect number, greater than a given number N . You may use other helper functions.
Using these functions, create another function to generate the first M perfect numbers.
(50 Marks)
Q3 Assume that you are given a curve as follows:
$f(x)=-1$ if $x<=-1$
$x^{\wedge} 3$ if $-1<x<1$
$x^{\wedge} 2-x+1$ if $1<=x$
In order to find the area bounded by the (continuous) curve and the x-axis, we find the approximation by summing the area of infinitesimally thin vertical strips as shown below:

Area of strips.

Create a function to approximate the area bounded by the above curve and the x-axis using strips of width Δx (parameter to the function) in the range [a,b] where a and b are integral values to be entered by the user.
Verify whether the following equality (approximately) holds true
Area[a,b] + Area[b,c] = Area [a, c]
Where Area[x, y] is the area of the curve in the range $[x, y]$.
Also, note the difference in areas with different width of strips.

