ESc 101: FUNDAMENTALS OF COMPUTING

Lecture 6

Jan 13, 2010

LECTURE 6 () ESc 101

RANGE OF VALUES FOR DIFFERENT TYPES

int: —23' to +231 —1
char: character \O (null) to character y
float: —2'%8 (approx) to +2'%% (approx)
double: —2192% (approx) to +210%* (approx)

LECTURE 6 () ESc 101 JAN 13, 2010

3/1

RECALL: BASIC STRUCTURE

main()
<statement-block>

<statement-block> has the form:

<variable declarations>
<statements>

LECTURE 6 () ESc 101

RECALL: VARIABLE DECLARATIONS

<variable declarations> is a sequence of declarations:

<declaration-1>
<declaration-2>

<declaration—-n>

Variable declaration: <type> <name>;

LECTURE 6 () ESc 101 JaN 13, 2010 5/1

VARIABLE NAMES

@ <name> is a sequence of letters and digits starting with a letter.
e Example: numl, num2new (3num is invalid name)

o Capital letters are treated as different from small letters.

o Example: num1, Numi1, NUM1 are distinct variables names

@ The symbol _ is treated as a letter.

o Example: num_1, num_2_new, _num

@ Caution: Do not use names beginning with _ as compiler uses these
names.

LECTURE 6 () ESc 101 JAN 13, 2010 6/1

STATEMENTS

<statements> is a sequence of statements:

<statement-1>
<statement-2>

<statement-n>

LECTURE 6 () ESc 101

A SINGLE STATEMENT

Each statement is one of the three kinds:

o Assignment statement
o Conditional statement

e Loop

LECTURE 6 () ESc 101 JAN 13, 2010 8/1

ASSIGNMENT STATEMENT

Its form is:

<name> = <expression>;

@ <name> is a variable name.

@ <expression> is an expression whose result is stored in <name> by
the statement.

LECTURE 6 () ESc 101 JAN 13, 2010 9/1

CONDITIONAL STATEMENT

Its form is:

if (<condition>)
<statement-block-1>

else
<statement-block-2>

@ <condition> is an expression.

@ If the value of <condition> is non-zero then <statement-block-1>
is executed, otherwise <statement-block-2>.

o if a statement block has only a single statement, then the curly braces
can be dropped.

LECTURE 6 () ESc 101 JAN 13, 2010 10 /1

Loor

Its form is:

for (<st-1>, ..., <st-n>; <condition>; <ste-1>, ..., <ste-m>)
<statement-block>

During the execution, first statements <st-1>, ..., <st-n> are
executed.

@ Then, if <condition> is non-zero, <statement-block> is executed.

Then statements <ste-1>, ..., <ste-m> are executed.

Then, if <condition> is non-zero, <statement-block> is executed,
and so on.

When the <condition> becomes zero, the execution goes past the
loop.

LECTURE 6 () ESc 101 JAN 13, 2010 11 /1

CONVERTING SEQUENCE OF DIGITS TO NUMBER - 1

main()

{

int digit;
int number;

digit = (int) getchar() - 48;
number = 0;

for (; (digit >= 0) && (digit <= 9);) {
number = number * 10 + digit;

digit = (int) getchar() - 48;
}

printf ("%d\n", number);

LECTURE 6 () ESc 101 JAN 13, 2010

13 /1

CONVERTING SEQUENCE OF DIGITS TO NUMBER - 2

main()

{

int digit;
int number;

digit = (int) getchar() - 48;
number = 0;

for (; (digit >= 0) && (digit <= 9);
digit = (int) getchar() - 48) {

number = number * 10 + digit;

¥

printf ("%d\n", number);

LECTURE 6 () ESc 101 JAN 13, 2010

14 /1

CONVERTING SEQUENCE OF DIGITS TO NUMBER -

main()

{
int digit;
int number;

for (digit = (int) getchar() - 48, number = O;
(digit >= 0) && (digit <= 9);
digit = (int) getchar() - 48),
number = number * 10 + digit);

printf ("%d\n", number) ;

LECTURE 6 () ESc 101 JAN 13, 2010

3

15 /1

GooD PRACTICES

One should include only simple statements inside the for loop brackets.
A better way of writing the same program:

main()

{

int digit;
int number;

digit = (int) getchar() - 48;
for (number = 0; (digit >= 0) && (digit <= 9);) {
number = number * 10 + digit;

digit = (int) getchar() - 48;

printf ("%d\n", number);

LECTURE 6 () ESc 101 JAN 13, 2010

16 /1

