
ESc 101: Fundamentals of Computing

Lecture 5

Jan 11, 2010

Lecture 5 () ESc 101 Jan 11, 2010 1 / 12



Outline

1 The ASCII Code

2 Syntax of C

Lecture 5 () ESc 101 Jan 11, 2010 2 / 12



Reading Data from Input

When a program needs to read data from input device (keyboard for
example), it asks the OS to read the input and transfer it to
appropriate memory location.

OS provides only one mode of reading the input: symbol-by-symbol.

Suppose the program wishes to read a number from input.

Then it must do the following:
I Read the symbols from input invoking the OS repeatedly until a

non-digit symbol is encountered.
I Convert the sequence of digits read to a number.

Lecture 5 () ESc 101 Jan 11, 2010 3 / 12



Reading Data from Input

When a program needs to read data from input device (keyboard for
example), it asks the OS to read the input and transfer it to
appropriate memory location.

OS provides only one mode of reading the input: symbol-by-symbol.

Suppose the program wishes to read a number from input.

Then it must do the following:
I Read the symbols from input invoking the OS repeatedly until a

non-digit symbol is encountered.
I Convert the sequence of digits read to a number.

Lecture 5 () ESc 101 Jan 11, 2010 3 / 12



Reading Data from Input

When a program needs to read data from input device (keyboard for
example), it asks the OS to read the input and transfer it to
appropriate memory location.

OS provides only one mode of reading the input: symbol-by-symbol.

Suppose the program wishes to read a number from input.

Then it must do the following:
I Read the symbols from input invoking the OS repeatedly until a

non-digit symbol is encountered.
I Convert the sequence of digits read to a number.

Lecture 5 () ESc 101 Jan 11, 2010 3 / 12



Reading Data from Input

When a program needs to read data from input device (keyboard for
example), it asks the OS to read the input and transfer it to
appropriate memory location.

OS provides only one mode of reading the input: symbol-by-symbol.

Suppose the program wishes to read a number from input.

Then it must do the following:
I Read the symbols from input invoking the OS repeatedly until a

non-digit symbol is encountered.
I Convert the sequence of digits read to a number.

Lecture 5 () ESc 101 Jan 11, 2010 3 / 12



Reading Data from Input

When a program needs to read data from input device (keyboard for
example), it asks the OS to read the input and transfer it to
appropriate memory location.

OS provides only one mode of reading the input: symbol-by-symbol.

Suppose the program wishes to read a number from input.

Then it must do the following:
I Read the symbols from input invoking the OS repeatedly until a

non-digit symbol is encountered.
I Convert the sequence of digits read to a number.

Lecture 5 () ESc 101 Jan 11, 2010 3 / 12



The View of OS

For OS, reading input means reading one symbol.

Similarly, displaying output means displaying one symbol.

The rest must be taken care of by the program.

Lecture 5 () ESc 101 Jan 11, 2010 4 / 12



The View of OS

For OS, reading input means reading one symbol.

Similarly, displaying output means displaying one symbol.

The rest must be taken care of by the program.

Lecture 5 () ESc 101 Jan 11, 2010 4 / 12



The View of OS

For OS, reading input means reading one symbol.

Similarly, displaying output means displaying one symbol.

The rest must be taken care of by the program.

Lecture 5 () ESc 101 Jan 11, 2010 4 / 12



The View of OS

ASCII code provides a mapping of symbols to numbers.

These numbers, written as binary sequences of eight bits (one byte),
are stored in memory.

It is the job of a program to assign appropriate interpretation to the
symbols.

Lecture 5 () ESc 101 Jan 11, 2010 5 / 12



The View of OS

ASCII code provides a mapping of symbols to numbers.

These numbers, written as binary sequences of eight bits (one byte),
are stored in memory.

It is the job of a program to assign appropriate interpretation to the
symbols.

Lecture 5 () ESc 101 Jan 11, 2010 5 / 12



The View of OS

ASCII code provides a mapping of symbols to numbers.

These numbers, written as binary sequences of eight bits (one byte),
are stored in memory.

It is the job of a program to assign appropriate interpretation to the
symbols.

Lecture 5 () ESc 101 Jan 11, 2010 5 / 12



Outline

1 The ASCII Code

2 Syntax of C

Lecture 5 () ESc 101 Jan 11, 2010 6 / 12



Basic Structure

main()
<statement-block>

Lecture 5 () ESc 101 Jan 11, 2010 7 / 12



Statement Block

<statement-block> has the form:

{
<variable declarations>
<statements>

}

Lecture 5 () ESc 101 Jan 11, 2010 8 / 12



Statement Block

<statement-block> has the form:

{
<variable declarations>
<statements>

}

<variable declarations> reserve memory locations and give names to
them. These are called variables.

Lecture 5 () ESc 101 Jan 11, 2010 8 / 12



Statement Block

<statement-block> has the form:

{
<variable declarations>
<statements>

}

<statements> is a sequence of instructions to be executed.

Lecture 5 () ESc 101 Jan 11, 2010 8 / 12



Statement Block

<statement-block> has the form:

{
<variable declarations>
<statements>

}

Declarations of variables can mix with statements, however, it is advisable
to declare all the variables before the statements in a block.

Lecture 5 () ESc 101 Jan 11, 2010 8 / 12



Variable Declarations

<variable declarations> is a sequence of declarations:

<declaration-1>
<declaration-2>

:
:

<declaration-n>

Lecture 5 () ESc 101 Jan 11, 2010 9 / 12



Declaring a Variable

A single declaration has the form:
<type> <name>;

<type> denotes the type of data that the memory location stores.
<name> is the variable, equivalently, it is the name assigned to the memory
location.
The semi-colon at the end denotes the end of the declarations.

Lecture 5 () ESc 101 Jan 11, 2010 10 / 12



Declaring a Variable

A single declaration has the form:
<type> <name>;

<type> denotes the type of data that the memory location stores.
<name> is the variable, equivalently, it is the name assigned to the memory
location.
The semi-colon at the end denotes the end of the declarations.

Lecture 5 () ESc 101 Jan 11, 2010 10 / 12



Declaring a Variable

A single declaration has the form:
<type> <name>;

<type> denotes the type of data that the memory location stores.
<name> is the variable, equivalently, it is the name assigned to the memory
location.
The semi-colon at the end denotes the end of the declarations.

Lecture 5 () ESc 101 Jan 11, 2010 10 / 12



Declaring a Variable

A single declaration has the form:
<type> <name>;

<type> denotes the type of data that the memory location stores.
<name> is the variable, equivalently, it is the name assigned to the memory
location.
The semi-colon at the end denotes the end of the declarations.

Lecture 5 () ESc 101 Jan 11, 2010 10 / 12



Types

There are several pre-defined types in C:

int: represents integers

char: represents a symbol, or character

float: represents a fractional number

double: also represents a fractional number, but with more space for
achieving better precision

There are some variations of these types which we will discuss later.

Lecture 5 () ESc 101 Jan 11, 2010 11 / 12



Types

There are several pre-defined types in C:

int: represents integers

char: represents a symbol, or character

float: represents a fractional number

double: also represents a fractional number, but with more space for
achieving better precision

There are some variations of these types which we will discuss later.

Lecture 5 () ESc 101 Jan 11, 2010 11 / 12



Types

There are several pre-defined types in C:

int: represents integers

char: represents a symbol, or character

float: represents a fractional number

double: also represents a fractional number, but with more space for
achieving better precision

There are some variations of these types which we will discuss later.

Lecture 5 () ESc 101 Jan 11, 2010 11 / 12



Types

There are several pre-defined types in C:

int: represents integers

char: represents a symbol, or character

float: represents a fractional number

double: also represents a fractional number, but with more space for
achieving better precision

There are some variations of these types which we will discuss later.

Lecture 5 () ESc 101 Jan 11, 2010 11 / 12



Types

There are several pre-defined types in C:

int: represents integers

char: represents a symbol, or character

float: represents a fractional number

double: also represents a fractional number, but with more space for
achieving better precision

There are some variations of these types which we will discuss later.

Lecture 5 () ESc 101 Jan 11, 2010 11 / 12



Types

There are several pre-defined types in C:

int: represents integers

char: represents a symbol, or character

float: represents a fractional number

double: also represents a fractional number, but with more space for
achieving better precision

There are some variations of these types which we will discuss later.

Lecture 5 () ESc 101 Jan 11, 2010 11 / 12



Space Reserved for Different Types

int: 4 bytes

char: 1 byte

float: 4 bytes

double: 8 bytes

Lecture 5 () ESc 101 Jan 11, 2010 12 / 12



Space Reserved for Different Types

int: 4 bytes

char: 1 byte

float: 4 bytes

double: 8 bytes

Lecture 5 () ESc 101 Jan 11, 2010 12 / 12



Space Reserved for Different Types

int: 4 bytes

char: 1 byte

float: 4 bytes

double: 8 bytes

Lecture 5 () ESc 101 Jan 11, 2010 12 / 12



Space Reserved for Different Types

int: 4 bytes

char: 1 byte

float: 4 bytes

double: 8 bytes

Lecture 5 () ESc 101 Jan 11, 2010 12 / 12


	The ASCII Code
	Syntax of C

