ESc 101: Fundamentals of Computing

Lecture 4

Jan 7, 2010

Outline

(1) The ASCII Code

Representing Symbols in Binary

- As the computer only understands binary, every symbol has to be translated to a binary sequence.
- ASCII code is a popular way of doing this.

Representing Symbols in Binary

- As the computer only understands binary, every symbol has to be translated to a binary sequence.
- ASCII code is a popular way of doing this.

Different Bases of Numbers

- We generally write numbers in decimal basis.
- Computers understand numbers in binary basis.
- Numbers in octal and hexadecimal basis are compact and allow easy conversion to and from binary basis.

Different Bases of Numbers

- We generally write numbers in decimal basis.
- Computers understand numbers in binary basis.
- Numbers in octal and hexadecimal basis are compact and allow easy conversion to and from binary basis.

Different Bases of Numbers

- We generally write numbers in decimal basis.
- Computers understand numbers in binary basis.
- Numbers in octal and hexadecimal basis are compact and allow easy conversion to and from binary basis.

The Octal Basis

- Uses digits 0-7.
- Number 8 is written as 10,9 as 11,10 as $12, \ldots, 15$ as 17,16 as 20 ,
- Three bits of a binary number make one digit of an octal number.
- Number 11001101 is same as 315 in octal basis.

The Octal Basis

- Uses digits 0-7.
- Number 8 is written as 10,9 as 11,10 as $12, \ldots, 15$ as 17,16 as 20 ,
- Three bits of a binary number make one digit of an octal number.
- Number 11001101 is same as 315 in octal basis.

The Octal Basis

- Uses digits 0-7.
- Number 8 is written as 10,9 as 11,10 as $12, \ldots, 15$ as 17,16 as 20 ,
- Three bits of a binary number make one digit of an octal number.
- Number 11001101 is same as 315 in octal basis.

The Hexadecimal Basis

- Uses digits 0-9 and letters a-f.
- Number 10 is written as $a, 11$ as $b, 12$ as $c, \ldots, 15$ as $f, 16$ as 10 ,
- Four bits of a binary number make one digit of hexadecimal number.
- Number 11001101 is same as $c d$ in hexadecimal basis.

The Hexadecimal Basis

- Uses digits 0-9 and letters a-f.
- Number 10 is written as $a, 11$ as $b, 12$ as $c, \ldots, 15$ as $f, 16$ as $10, \ldots$.
- Four bits of a binary number make one digit of hexadecimal number.
- Number 11001101 is same as cd in hexadecimal basis.

The Hexadecimal Basis

- Uses digits 0-9 and letters a-f.
- Number 10 is written as $a, 11$ as $b, 12$ as $c, \ldots, 15$ as $f, 16$ as $10, \ldots$.
- Four bits of a binary number make one digit of hexadecimal number.
- Number 11001101 is same as $c d$ in hexadecimal basis.

The ASCII Table

Extending ASCII Code

- Extended ASCII Code assigns symbols to numbers 128-255.
- Thus, ASCII and Extended ASCII Code require one byte of storage.
- To include symbols from other languages, Unicode was introduced.
- Each Unicode symbol is written using two bytes.

Extending ASCII Code

- Extended ASCII Code assigns symbols to numbers 128-255.
- Thus, ASCII and Extended ASCII Code require one byte of storage.
- To include symbols from other languages, Unicode was introduced.
- Each Unicode symbol is written using two bytes.

Extending ASCII Code

- Extended ASCII Code assigns symbols to numbers 128-255.
- Thus, ASCII and Extended ASCII Code require one byte of storage.
- To include symbols from other languages, Unicode was introduced.
- Each Unicode symbol is written using two bytes.

Printing ASCII Code of a Symbol

\#include <stdio.h>

main()
\{
int code;
code = (int) getchar();
printf("\%d", code);
\}

