
ESc 101: Fundamentals of Computing

Lecture 1

Dec 31, 2009

Lecture 1 () ESc 101 Dec 31, 2009 1 / 36



Instructor

Who? Manindra Agrawal

Where? Professor, Dept of CSE

Why? It is interesting to teach a large class

Lecture 1 () ESc 101 Dec 31, 2009 3 / 36



Contents

The goals of the course are:

1 Learning to solve problems algorithmically

2 Learning to Convert algorithms to programs

3 Learn a programming language: C

4 And if time permits, another one: Mathematica

Lecture 1 () ESc 101 Dec 31, 2009 4 / 36



Books

Reference Book: The C Programming Language, by Kernighan and
Ritchie.

Additional Reading: The UNIX Programming Environment, by
Kernighan and Pike.

Lecture 1 () ESc 101 Dec 31, 2009 5 / 36



Grading

The course will have

Two midsems, weightage 15% each

Ten labs, weightage 1% each

Lab exam (last lab week), weightage 15%

Endsem, weightage 35%

Two quizzes, weightage 5% each

Quizzes will not be announced!

Lecture 1 () ESc 101 Dec 31, 2009 6 / 36



Copying Policy

Anyone caught copying in a lab will get zero in all labs.

Anyone caught copying in exams, lab or written, will get zero in all
exams.

Lecture 1 () ESc 101 Dec 31, 2009 7 / 36



Schedule

Lectures on Mon, Wed, and Thu at 8.00 hrs

Tutorial on Tue at 8.00 hrs

Lab on Mon (C7-C9), Tue (C4-C6), and Thu (C1-C3) during 14.00 to
17.00 hrs

No labs next week

Lecture 1 () ESc 101 Dec 31, 2009 8 / 36



Computers

What? A machine that can carry out any computational task.

Really? It is formally proven that a computer, given sufficient memory
and time, can carry our any computational task!

How? For this, we look inside a typical computer.

Lecture 1 () ESc 101 Dec 31, 2009 10 / 36



Inside a PC

Lecture 1 () ESc 101 Dec 31, 2009 11 / 36



The Motherboard

Lecture 1 () ESc 101 Dec 31, 2009 12 / 36



Functional Units

CPU: Central Processing Unit (ALU: Arithmetic and Logic Unit; Control
Unit: Executes instructions)
Memory: Storage area; quickly accessible from CPU
Hard Disk: Storage area; not so quickly accessible from CPU
Bus: Communication lines for transferring data

Lecture 1 () ESc 101 Dec 31, 2009 13 / 36



Binary Format

In a computer, everything is stored in binary format: a sequence of
0’s and 1’s.

The components of a computer understand only binary format.

Number 4 is stored as 00000100, 1 is stored as 00000001 etc.

Lecture 1 () ESc 101 Dec 31, 2009 15 / 36



Execution in a Computer

To begin with, all the data and commands related to a computation
is stored in Memory.

Commands are then brought into the CPU through the Bus, one at a
time.

Each command is executed inside the CPU in the following way:
I If the command requires data, it is brought to CPU from Memory
I Command is then executed using the data
I The command may be for storing data present inside the CPU to

Memory

A program is a collection of commands.

Lecture 1 () ESc 101 Dec 31, 2009 16 / 36



A Small Program

0000010010011001
0000010010011010
0000011011001000
0000010011010001

- read memory location 001
- read memory location 010
- add two numbers read
- store the result in memory location 001

Lecture 1 () ESc 101 Dec 31, 2009 17 / 36



Execution

Lecture 1 () ESc 101 Dec 31, 2009 18 / 36



Execution

Lecture 1 () ESc 101 Dec 31, 2009 19 / 36



Execution

Lecture 1 () ESc 101 Dec 31, 2009 20 / 36



Execution

Lecture 1 () ESc 101 Dec 31, 2009 21 / 36



Execution

Lecture 1 () ESc 101 Dec 31, 2009 22 / 36



Execution

Lecture 1 () ESc 101 Dec 31, 2009 23 / 36



Execution

Lecture 1 () ESc 101 Dec 31, 2009 24 / 36



Execution

Lecture 1 () ESc 101 Dec 31, 2009 25 / 36



Assembly Language

It is very difficult for us to understand this binary language, called
machine language!

And this is the only language that computers understand!!

To make it more readable, assembly language was introduced.

In assembly language, operations and memory locations are addressed
by names.

Lecture 1 () ESc 101 Dec 31, 2009 26 / 36



Naming Locations in Example Program

Lecture 1 () ESc 101 Dec 31, 2009 27 / 36



Example Program in Assembly Language

0000010010011001
0000010010011010
0000011011001000
0000010011010001

MOVE NUM1, R1
MOVE NUM2, R2
ADD R1, R2
MOVE R1, NUM1

Move contents of memory location NUM1 to CPU register R1
Move contents of memory location NUM2 to CPU register R2
Add contents of R1 and R2 and store the result in R1
Move the contents of R1 to memory location NUM1

Lecture 1 () ESc 101 Dec 31, 2009 28 / 36



Assemblers

An assembly language program eventually must be translated to
machine language.

An assembler does this job.

It maps the names to the corresponding binary values.

It is also a program!

Lecture 1 () ESc 101 Dec 31, 2009 29 / 36



I/O

The example only shows how to add numbers already present in the
Memory.

How does one add numbers provided by the user through the
keyboard?

This is the job of another program, called the Operating System (OS
in short).

Lecture 1 () ESc 101 Dec 31, 2009 30 / 36



OS

OS picks the input given by the user and stores it in appropriate
locations of Memory.

It also picks result of computations from Memory and displays to the
user.

It does many other housekeeping jobs that make the interaction of
user with the computer easy.

Examples of OS: Linux, Windows, Mac OS.

Lecture 1 () ESc 101 Dec 31, 2009 31 / 36



Need for a Better Language

It is very difficult to write large programs in assembly language.

Several language were created during 1960-80 to simplify the task of
the programmer.

The prominent ones are: COBOL, Fortran, Pascal, C.

These are called High-level programming languages.

Assembly and machine language are called low level programming
languages.

Lecture 1 () ESc 101 Dec 31, 2009 33 / 36



Adding Two Numbers in C

main()
{

int num1;
int num2;

scanf("%d", &num1);
scanf("%d", &num2);

num1 = num1 + num2;

printf("%d", num1);
}

Lecture 1 () ESc 101 Dec 31, 2009 34 / 36



Adding Two Numbers in C

main()
{

int num1;
int num2;

scanf("%d", &num1);
scanf("%d", &num2);

num1 = num1 + num2;

printf("%d", num1);
}

Denotes the beginning and the
end of the program.
Names a memory location.
Reads a number from the input
and stores it in the specified
memory location. Invokes the OS
to transfer the number.
Adds two numbers and stores the
result in location num1. It
corresponds to the whole machine
language program earlier!

Writes the number on the

monitor. Invokes the OS to do it.

Lecture 1 () ESc 101 Dec 31, 2009 35 / 36



Compilers

A C compiler translates a C program to machine language.

There are many C compliers. We will use one called gcc.

Lecture 1 () ESc 101 Dec 31, 2009 36 / 36


	The Course
	Computers
	Performing Computation
	The C Language

