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Summary of previous lecture (Variables)

I Variables are memory location where values are stored

I They have a name, a type associated with them and a value.

I The name of a variable can start with a letter and contain
letter or digit.

I The special character _ (under score) is considered as a letter.

I The value associated can be changed using an assignment.



Summary Operator precedence

I Arithmetic operators

I Unary operators (unary -)
I *, /
I +, -

I relational operators

I boolean operators

eg - 4 * 3 < 1 && 2 > x + 5 is same as
((-4) * 3) < 1) && (2 > (x + 5))
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Integer expressions

I Variable declaration

int x;
int foo=100;

I Printing

printf("The value of integer variable %d\n",x);

I Arithmetic operators +,-,*,/, %, - (unary minus) etc

I Relational operators. <,<=,>, >=, == etc

Important

The operator for checking for equality is == and not =.



Factorial program

# include<stdio.h>

int main(){
int n;
int i = 1;
printf("Enter the value: ");
scanf("%d",&n);
int fact = 1;
while(i <= n)
{
fact = fact * i;
i = i + 1;

}
printf("The factorial of %d is %d\n", n, fact);

}



Why did the factorial program go wrong?

Answer
Integers are of fixed precision typically 32 bits.
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Real numbers expressions

I Variable declaration

float x;
float pi=3.141;
double avagadro = 6.023e23;

I Printing

printf("Values are %f, %g\n",x,avagadro);

I Arithmetic operators and relational operators are similar to
integers.

Important

Use double always. That gives better precission.



Integers and Floats

C does automatic coversion between integers and floats.

I Integer to Float/Double extension

I Float/Double to integer truncation

Unfortunately this is a very bad design.

int u = 10;
int v = 11;
float av;
av = (u + v)/2
prinf("%f",av);



Assignments

Assignment is used to modify the value of a variable.
eg.

x = 10;
foo = 4.2;

Assignment as expression

In C assignment itself is an expression.

x = y = 10;

Special assignment

i++;
foo *= 10;

i = i + 1;
foo = foo * 10;



Assignments

Assignment is used to modify the value of a variable.
eg.

x = 10;
foo = 4.2;

Assignment as expression

In C assignment itself is an expression.

x = y = 10;

Special assignment

i++;
foo *= 10;

i = i + 1;
foo = foo * 10;



Assignments

Assignment is used to modify the value of a variable.
eg.

x = 10;
foo = 4.2;

Assignment as expression

In C assignment itself is an expression.

x = y = 10;

Special assignment

i++;
foo *= 10;

i = i + 1;
foo = foo * 10;



Boolean

There are no booleans in C.
Integers, characters etc all play the role of boolean
value of 0 is false. value of nonzero is true.

WARNING

x = 100;
if (x = 0)
{
printf("Null value unexpected");

}else{
printf("Good value");

}
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