
Fundamentals of Computing: Lecture 4

Piyush P Kurur
Office no: 224

Dept. of Comp. Sci. and Engg.
IIT Kanpur

August 3, 2009

Summary of previous lecture (Variables)

I Variables are memory location where values are stored

I They have a name, a type associated with them and a value.

I The name of a variable can start with a letter and contain
letter or digit.

I The special character _ (under score) is considered as a letter.

I The value associated can be changed using an assignment.

Summary Operator precedence

I Arithmetic operators

I Unary operators (unary -)
I *, /
I +, -

I relational operators

I boolean operators

eg - 4 * 3 < 1 && 2 > x + 5 is same as
((-4) * 3) < 1) && (2 > (x + 5))

Summary Operator precedence

I Arithmetic operators
I Unary operators (unary -)
I *, /
I +, -

I relational operators

I boolean operators

eg - 4 * 3 < 1 && 2 > x + 5 is same as
((-4) * 3) < 1) && (2 > (x + 5))

Summary Operator precedence

I Arithmetic operators
I Unary operators (unary -)
I *, /
I +, -

I relational operators

I boolean operators

eg - 4 * 3 < 1 && 2 > x + 5 is same as
((-4) * 3) < 1) && (2 > (x + 5))

Integer expressions

I Variable declaration

int x;
int foo=100;

I Printing

printf("The value of integer variable %d\n",x);

I Arithmetic operators +,-,*,/, %, - (unary minus) etc

I Relational operators. <,<=,>, >=, == etc

Important

The operator for checking for equality is == and not =.

Factorial program

include<stdio.h>

int main(){
int n;
int i = 1;
printf("Enter the value: ");
scanf("%d",&n);
int fact = 1;
while(i <= n)
{
fact = fact * i;
i = i + 1;

}
printf("The factorial of %d is %d\n", n, fact);

}

Why did the factorial program go wrong?

Answer
Integers are of fixed precision typically 32 bits.

Why did the factorial program go wrong?

Answer
Integers are of fixed precision typically 32 bits.

Real numbers expressions

I Variable declaration

float x;
float pi=3.141;
double avagadro = 6.023e23;

I Printing

printf("Values are %f, %g\n",x,avagadro);

I Arithmetic operators and relational operators are similar to
integers.

Important

Use double always. That gives better precission.

Integers and Floats

C does automatic coversion between integers and floats.

I Integer to Float/Double extension

I Float/Double to integer truncation

Unfortunately this is a very bad design.

int u = 10;
int v = 11;
float av;
av = (u + v)/2
prinf("%f",av);

Assignments

Assignment is used to modify the value of a variable.
eg.

x = 10;
foo = 4.2;

Assignment as expression

In C assignment itself is an expression.

x = y = 10;

Special assignment

i++;
foo *= 10;

i = i + 1;
foo = foo * 10;

Assignments

Assignment is used to modify the value of a variable.
eg.

x = 10;
foo = 4.2;

Assignment as expression

In C assignment itself is an expression.

x = y = 10;

Special assignment

i++;
foo *= 10;

i = i + 1;
foo = foo * 10;

Assignments

Assignment is used to modify the value of a variable.
eg.

x = 10;
foo = 4.2;

Assignment as expression

In C assignment itself is an expression.

x = y = 10;

Special assignment

i++;
foo *= 10;

i = i + 1;
foo = foo * 10;

Boolean

There are no booleans in C.
Integers, characters etc all play the role of boolean
value of 0 is false. value of nonzero is true.

WARNING

x = 100;
if (x = 0)
{
printf("Null value unexpected");

}else{
printf("Good value");

}

Boolean

There are no booleans in C.
Integers, characters etc all play the role of boolean
value of 0 is false. value of nonzero is true.

WARNING

x = 100;
if (x = 0)
{
printf("Null value unexpected");

}else{
printf("Good value");

}

