
Fundamentals of Computing: Lecture 38

Piyush P Kurur
O�ce no: 224

Dept. of Comp. Sci. and Engg.
IIT Kanpur

November 11, 2009

Summary of last class

I Simple shell program.

$ cmd arg1 arg2 arg3

I stdin/stdout/stderr redirection

$ cmd arg1 arg2 <foo # get input from foo

$ cmd arg >bar

$ cmd 2>&1 | less # 0-stdin 1-stdout 2-stderr

$ cmd >>foo # append to the file foo instead of write

I Pipes

$ cmd1 | cmd2 | cmd3 | cmd

Summary of last class

I Simple shell program.

$ cmd arg1 arg2 arg3

I stdin/stdout/stderr redirection

$ cmd arg1 arg2 <foo # get input from foo

$ cmd arg >bar

$ cmd 2>&1 | less # 0-stdin 1-stdout 2-stderr

$ cmd >>foo # append to the file foo instead of write

I Pipes

$ cmd1 | cmd2 | cmd3 | cmd

Summary of last class

I Simple shell program.

$ cmd arg1 arg2 arg3

I stdin/stdout/stderr redirection

$ cmd arg1 arg2 <foo # get input from foo

$ cmd arg >bar

$ cmd 2>&1 | less # 0-stdin 1-stdout 2-stderr

$ cmd >>foo # append to the file foo instead of write

I Pipes

$ cmd1 | cmd2 | cmd3 | cmd

Summary of last class

I Simple shell program.

$ cmd arg1 arg2 arg3

I stdin/stdout/stderr redirection

$ cmd arg1 arg2 <foo # get input from foo

$ cmd arg >bar

$ cmd 2>&1 | less # 0-stdin 1-stdout 2-stderr

$ cmd >>foo # append to the file foo instead of write

I Pipes

$ cmd1 | cmd2 | cmd3 | cmd

Summary of last class

I Simple shell program.

$ cmd arg1 arg2 arg3

I stdin/stdout/stderr redirection

$ cmd arg1 arg2 <foo # get input from foo

$ cmd arg >bar

$ cmd 2>&1 | less # 0-stdin 1-stdout 2-stderr

$ cmd >>foo # append to the file foo instead of write

I Pipes

$ cmd1 | cmd2 | cmd3 | cmd

Shell variables

To assign a shell variable

$ foo=bar # no space between foo and bar

To get the value of foo use $foo

$ echo the value of variable foo is $foo

Some important shell variables

I PATH The directories where an executable is searched

$ export PATH=/bin/:/usr/bin:/usr/local/bin:

I PS1 The �rst prompt

I PS2 the second prompt etc

Shell variables

To assign a shell variable

$ foo=bar # no space between foo and bar

To get the value of foo use $foo

$ echo the value of variable foo is $foo

Some important shell variables

I PATH The directories where an executable is searched

$ export PATH=/bin/:/usr/bin:/usr/local/bin:

I PS1 The �rst prompt

I PS2 the second prompt etc

Shell variables

To assign a shell variable

$ foo=bar # no space between foo and bar

To get the value of foo use $foo

$ echo the value of variable foo is $foo

Some important shell variables

I PATH The directories where an executable is searched

$ export PATH=/bin/:/usr/bin:/usr/local/bin:

I PS1 The �rst prompt

I PS2 the second prompt etc

Funny characters

Shell interpretes some characters di�erently We have already seen
some <, >, &, | etc.

The character '*' means any sequece of
characters

$ ls *.c

$ rm *.o

Funny characters

Shell interpretes some characters di�erently We have already seen
some <, >, &, | etc. The character '*' means any sequece of
characters

$ ls *.c

$ rm *.o

Funny characters

Shell interpretes some characters di�erently We have already seen
some <, >, &, | etc. The character '*' means any sequece of
characters

$ ls *.c

$ rm *.o

Protecting characters

I Use \ to protect funny characters

$ ls filename\ with\ spaces

$ echo I am an invisible file > \

I Quoting with '

$ ls 'filename with spaces'

$ rm '*' # actually removes a file called *

$ echo I am an invisible file > ' '

I Double quoting ". Similar to ' but shell variables expand

$ foo=bar

$ echo '$foo is the value of foo'

$ ech "$foo is the value of foo"

Protecting characters

I Use \ to protect funny characters

$ ls filename\ with\ spaces

$ echo I am an invisible file > \

I Quoting with '

$ ls 'filename with spaces'

$ rm '*' # actually removes a file called *

$ echo I am an invisible file > ' '

I Double quoting ". Similar to ' but shell variables expand

$ foo=bar

$ echo '$foo is the value of foo'

$ ech "$foo is the value of foo"

Protecting characters

I Use \ to protect funny characters

$ ls filename\ with\ spaces

$ echo I am an invisible file > \

I Quoting with '

$ ls 'filename with spaces'

$ rm '*' # actually removes a file called *

$ echo I am an invisible file > ' '

I Double quoting ". Similar to ' but shell variables expand

$ foo=bar

$ echo '$foo is the value of foo'

$ ech "$foo is the value of foo"

Protecting characters

I Use \ to protect funny characters

$ ls filename\ with\ spaces

$ echo I am an invisible file > \

I Quoting with '

$ ls 'filename with spaces'

$ rm '*' # actually removes a file called *

$ echo I am an invisible file > ' '

I Double quoting ". Similar to ' but shell variables expand

$ foo=bar

$ echo '$foo is the value of foo'

$ ech "$foo is the value of foo"

Protecting characters

I Use \ to protect funny characters

$ ls filename\ with\ spaces

$ echo I am an invisible file > \

I Quoting with '

$ ls 'filename with spaces'

$ rm '*' # actually removes a file called *

$ echo I am an invisible file > ' '

I Double quoting ". Similar to ' but shell variables expand

$ foo=bar

$ echo '$foo is the value of foo'

$ ech "$foo is the value of foo"

The program grep

grep is a �lter. It sends only those lines where a given pattern
matches.

grep PATTERN file1 file2 file3

grep PATTERN

The pattern can be what is called a regular expression eg. Print all
the hidden �les (�les with name staring with a .)

ls | grep '^\..*' | less #

I ^ means start of the line

I . means any character

I r * means many r's

I I have written the \. to escape the special meaning

The program grep

grep is a �lter. It sends only those lines where a given pattern
matches.

grep PATTERN file1 file2 file3

grep PATTERN

The pattern can be what is called a regular expression

eg. Print all
the hidden �les (�les with name staring with a .)

ls | grep '^\..*' | less #

I ^ means start of the line

I . means any character

I r * means many r's

I I have written the \. to escape the special meaning

The program grep

grep is a �lter. It sends only those lines where a given pattern
matches.

grep PATTERN file1 file2 file3

grep PATTERN

The pattern can be what is called a regular expression eg. Print all
the hidden �les (�les with name staring with a .)

ls | grep '^\..*' | less #

I ^ means start of the line

I . means any character

I r * means many r's

I I have written the \. to escape the special meaning

The program grep

grep is a �lter. It sends only those lines where a given pattern
matches.

grep PATTERN file1 file2 file3

grep PATTERN

The pattern can be what is called a regular expression eg. Print all
the hidden �les (�les with name staring with a .)

ls | grep '^\..*' | less #

I ^ means start of the line

I . means any character

I r * means many r's

I I have written the \. to escape the special meaning

The program grep

grep is a �lter. It sends only those lines where a given pattern
matches.

grep PATTERN file1 file2 file3

grep PATTERN

The pattern can be what is called a regular expression eg. Print all
the hidden �les (�les with name staring with a .)

ls | grep '^\..*' | less #

I ^ means start of the line

I . means any character

I r * means many r's

I I have written the \. to escape the special meaning

