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Reverse polish calculator

A calculator where the operators are given in postfix notation
The expression (2 + 3) * 5is given by 2 3 + 5 *

In the reverse polish notation there is no need to provide any
bracket Proof 7

Our goal is to write a program for reverse polish notation.
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The stack data structure

A stack is a last in first out data structure.
It supports two operations

» push(x) : ‘pushes’ the value x on top of the stack.

» pop() : ‘pops’ the top of the stack.
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Evaluating a RPN expression using stack

» As you get numbers, keep pushing it.

» Whenever you get an operator, pop its operand(s), perform
the operation and push the result back.
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Lexical analysis

Splitting up the input into “tokens”.
» Number
> operators ’+’ ’=’ %’ and ’/’
> p for popping the stack and
> P for emptying the stack



Organisation of the code

» stack.c is the code for stack manipulation.
» lex.c performes a lexical analysis.

» calc.c is the main program.



