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Reverse polish calculator

A calculator where the operators are given in post�x notation

The expression (2 + 3) * 5 is given by 2 3 + 5 *

In the reverse polish notation there is no need to provide any

bracket Proof ?

Our goal is to write a program for reverse polish notation.
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A stack is a last in �rst out data structure.

It supports two operations

I push(x) : `pushes' the value x on top of the stack.

I pop() : `pops' the top of the stack.
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Evaluating a RPN expression using stack

I As you get numbers, keep pushing it.

I Whenever you get an operator, pop its operand(s), perform

the operation and push the result back.
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Lexical analysis

Splitting up the input into \tokens".

I Number

I operators '+' '-' '*' and '/'

I p for popping the stack and

I P for emptying the stack
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Organisation of the code

I stack.c is the code for stack manipulation.

I lex.c performes a lexical analysis.

I calc.c is the main program.


