
Fundamentals of Computing: Lecture 33

Piyush P Kurur

O�ce no: 224

Dept. of Comp. Sci. and Engg.

IIT Kanpur

October 30, 2009



Summary of the last class

I The static key word.

I The extern key word



Summary of the last class

I The static key word.

I The extern key word



Summary of the last class

I The static key word.

I The extern key word



Reverse polish calculator

A calculator where the operators are given in post�x notation

The expression (2 + 3) * 5 is given by 2 3 + 5 *

In the reverse polish notation there is no need to provide any

bracket Proof ?

Our goal is to write a program for reverse polish notation.



Reverse polish calculator

A calculator where the operators are given in post�x notation

The expression (2 + 3) * 5 is given by 2 3 + 5 *

In the reverse polish notation there is no need to provide any

bracket Proof ?

Our goal is to write a program for reverse polish notation.



Reverse polish calculator

A calculator where the operators are given in post�x notation

The expression (2 + 3) * 5 is given by 2 3 + 5 *

In the reverse polish notation there is no need to provide any

bracket Proof ?

Our goal is to write a program for reverse polish notation.



Reverse polish calculator

A calculator where the operators are given in post�x notation

The expression (2 + 3) * 5 is given by 2 3 + 5 *

In the reverse polish notation there is no need to provide any

bracket

Proof ?

Our goal is to write a program for reverse polish notation.



Reverse polish calculator

A calculator where the operators are given in post�x notation

The expression (2 + 3) * 5 is given by 2 3 + 5 *

In the reverse polish notation there is no need to provide any

bracket Proof ?

Our goal is to write a program for reverse polish notation.



Reverse polish calculator

A calculator where the operators are given in post�x notation

The expression (2 + 3) * 5 is given by 2 3 + 5 *

In the reverse polish notation there is no need to provide any

bracket Proof ?

Our goal is to write a program for reverse polish notation.



The stack data structure

A stack is a last in �rst out data structure.

It supports two operations

I push(x) : `pushes' the value x on top of the stack.

I pop() : `pops' the top of the stack.



The stack data structure

A stack is a last in �rst out data structure.

It supports two operations

I push(x) : `pushes' the value x on top of the stack.

I pop() : `pops' the top of the stack.



The stack data structure

A stack is a last in �rst out data structure.

It supports two operations

I push(x) : `pushes' the value x on top of the stack.

I pop() : `pops' the top of the stack.



The stack data structure

A stack is a last in �rst out data structure.

It supports two operations

I push(x) : `pushes' the value x on top of the stack.

I pop() : `pops' the top of the stack.



The stack data structure

A stack is a last in �rst out data structure.

It supports two operations

I push(x) : `pushes' the value x on top of the stack.

I pop() : `pops' the top of the stack.



Evaluating a RPN expression using stack

I As you get numbers, keep pushing it.

I Whenever you get an operator, pop its operand(s), perform

the operation and push the result back.



Evaluating a RPN expression using stack

I As you get numbers, keep pushing it.

I Whenever you get an operator, pop its operand(s), perform

the operation and push the result back.



Evaluating a RPN expression using stack

I As you get numbers, keep pushing it.

I Whenever you get an operator, pop its operand(s), perform

the operation and push the result back.



Evaluating a RPN expression using stack

I As you get numbers, keep pushing it.

I Whenever you get an operator, pop its operand(s), perform

the operation and push the result back.



Lexical analysis

Splitting up the input into \tokens".

I Number

I operators '+' '-' '*' and '/'

I p for popping the stack and

I P for emptying the stack



Lexical analysis

Splitting up the input into \tokens".

I Number

I operators '+' '-' '*' and '/'

I p for popping the stack and

I P for emptying the stack



Lexical analysis

Splitting up the input into \tokens".

I Number

I operators '+' '-' '*' and '/'

I p for popping the stack and

I P for emptying the stack



Lexical analysis

Splitting up the input into \tokens".

I Number

I operators '+' '-' '*' and '/'

I p for popping the stack and

I P for emptying the stack



Lexical analysis

Splitting up the input into \tokens".

I Number

I operators '+' '-' '*' and '/'

I p for popping the stack and

I P for emptying the stack



Lexical analysis

Splitting up the input into \tokens".

I Number

I operators '+' '-' '*' and '/'

I p for popping the stack and

I P for emptying the stack



Organisation of the code

I stack.c is the code for stack manipulation.

I lex.c performes a lexical analysis.

I calc.c is the main program.


