Fundamentals of Computing: Lecture 33

Piyush P Kurur
Office no: 224
Dept. of Comp. Sci. and Engg.
IIT Kanpur

October 30, 2009



Summary of the last class



Summary of the last class

» The static key word.



Summary of the last class

» The static key word.

» The extern key word



Reverse polish calculator



Reverse polish calculator

A calculator where the operators are given in postfix notation



Reverse polish calculator

A calculator where the operators are given in postfix notation
The expression (2 + 3) * 5is given by 2 3 + 5 *



Reverse polish calculator

A calculator where the operators are given in postfix notation
The expression (2 + 3) * 5is given by 2 3 + 5 *

In the reverse polish notation there is no need to provide any
bracket



Reverse polish calculator

A calculator where the operators are given in postfix notation
The expression (2 + 3) * 5is given by 2 3 + 5 *

In the reverse polish notation there is no need to provide any
bracket Proof 7



Reverse polish calculator

A calculator where the operators are given in postfix notation
The expression (2 + 3) * 5is given by 2 3 + 5 *

In the reverse polish notation there is no need to provide any
bracket Proof 7

Our goal is to write a program for reverse polish notation.



The stack data structure



The stack data structure

A stack is a last in first out data structure.



The stack data structure

A stack is a last in first out data structure.
It supports two operations



The stack data structure

A stack is a last in first out data structure.
It supports two operations

» push(x) : ‘pushes’ the value x on top of the stack.



The stack data structure

A stack is a last in first out data structure.
It supports two operations

» push(x) : ‘pushes’ the value x on top of the stack.

» pop() : ‘pops’ the top of the stack.



Evaluating a RPN expression using stack



Evaluating a RPN expression using stack



Evaluating a RPN expression using stack

» As you get numbers, keep pushing it.



Evaluating a RPN expression using stack

» As you get numbers, keep pushing it.

» Whenever you get an operator, pop its operand(s), perform
the operation and push the result back.



Lexical analysis

Splitting up the input into “tokens”.



Lexical analysis

Splitting up the input into “tokens”.



Lexical analysis

Splitting up the input into “tokens”.

» Number



Lexical analysis

Splitting up the input into “tokens”.
» Number

> operators ’+’ ’=’ %’ and ’/’



Lexical analysis

Splitting up the input into “tokens”.
» Number
> operators ’+’ ’=’ %’ and ’/’

» p for popping the stack and



Lexical analysis

Splitting up the input into “tokens”.
» Number
> operators ’+’ ’=’ %’ and ’/’
> p for popping the stack and
> P for emptying the stack



Organisation of the code

» stack.c is the code for stack manipulation.
» lex.c performes a lexical analysis.

» calc.c is the main program.



