
Fundamentals of Computing: Lecture 33

Piyush P Kurur

O�ce no: 224

Dept. of Comp. Sci. and Engg.

IIT Kanpur

October 28, 2009



Summary of last class

I C preprocession (cpp)

I Including �les

I De�ning macros.



Summary of last class

I C preprocession (cpp)

I Including �les

I De�ning macros.



Summary of last class

I C preprocession (cpp)

I Including �les

I De�ning macros.



Summary of last class

I C preprocession (cpp)

I Including �les

I De�ning macros.



Including �les

#include <stdio.h>

#include <openssl/x509.h>

#include "foo.h"

I The #include line is replaced by the contents of the �le

I The general syntax is

#include <filepath>

#include "filepath"

I When angle backets are used the the �le path is relative to a

standard directory usually /usr/include/.

I When double quotes the �le path is relative ot the current

director.



Including �les

#include <stdio.h>

#include <openssl/x509.h>

#include "foo.h"

I The #include line is replaced by the contents of the �le

I The general syntax is

#include <filepath>

#include "filepath"

I When angle backets are used the the �le path is relative to a

standard directory usually /usr/include/.

I When double quotes the �le path is relative ot the current

director.



Including �les

#include <stdio.h>

#include <openssl/x509.h>

#include "foo.h"

I The #include line is replaced by the contents of the �le

I The general syntax is

#include <filepath>

#include "filepath"

I When angle backets are used the the �le path is relative to a

standard directory usually /usr/include/.

I When double quotes the �le path is relative ot the current

director.



Including �les

#include <stdio.h>

#include <openssl/x509.h>

#include "foo.h"

I The #include line is replaced by the contents of the �le

I The general syntax is

#include <filepath>

#include "filepath"

I When angle backets are used the the �le path is relative to a

standard directory usually /usr/include/.

I When double quotes the �le path is relative ot the current

director.



Including �les

#include <stdio.h>

#include <openssl/x509.h>

#include "foo.h"

I The #include line is replaced by the contents of the �le

I The general syntax is

#include <filepath>

#include "filepath"

I When angle backets are used the the �le path is relative to a

standard directory usually /usr/include/.

I When double quotes the �le path is relative ot the current

director.



Including �les

#include <stdio.h>

#include <openssl/x509.h>

#include "foo.h"

I The #include line is replaced by the contents of the �le

I The general syntax is

#include <filepath>

#include "filepath"

I When angle backets are used the the �le path is relative to a

standard directory usually /usr/include/.

I When double quotes the �le path is relative ot the current

director.



Macro de�nitions

#define ANSWER 42

#define ANSWERSTR "The answer is 42"

#define mul(a,b) ((a) * (b))

I The macros are substituted literally.

I Happens before compilation

I Macros can take arguments

I Macro with arguments should be used with care.



Macro de�nitions

#define ANSWER 42

#define ANSWERSTR "The answer is 42"

#define mul(a,b) ((a) * (b))

I The macros are substituted literally.

I Happens before compilation

I Macros can take arguments

I Macro with arguments should be used with care.



Macro de�nitions

#define ANSWER 42

#define ANSWERSTR "The answer is 42"

#define mul(a,b) ((a) * (b))

I The macros are substituted literally.

I Happens before compilation

I Macros can take arguments

I Macro with arguments should be used with care.



Macro de�nitions

#define ANSWER 42

#define ANSWERSTR "The answer is 42"

#define mul(a,b) ((a) * (b))

I The macros are substituted literally.

I Happens before compilation

I Macros can take arguments

I Macro with arguments should be used with care.



Macro de�nitions

#define ANSWER 42

#define ANSWERSTR "The answer is 42"

#define mul(a,b) ((a) * (b))

I The macros are substituted literally.

I Happens before compilation

I Macros can take arguments

I Macro with arguments should be used with care.



Macro de�nitions

#define ANSWER 42

#define ANSWERSTR "The answer is 42"

#define mul(a,b) ((a) * (b))

I The macros are substituted literally.

I Happens before compilation

I Macros can take arguments

I Macro with arguments should be used with care.



Macro de�nitions

#define ANSWER 42

#define ANSWERSTR "The answer is 42"

#define mul(a,b) ((a) * (b))

I The macros are substituted literally.

I Happens before compilation

I Macros can take arguments

I Macro with arguments should be used with care.



The static keyword

Syntax of usage

static declaration

static int x;

int foo()

{

static int foo_invoke=0;

foo_invoke ++;

return foo_invoke;

}

I A variable can be declared static.

I If the variable is a declared inside a function then all the

invocation of the function uses the same variable.

I If it is declared outside every function then it is visible only

within that �le.



The static keyword

Syntax of usage

static declaration

static int x;

int foo()

{

static int foo_invoke=0;

foo_invoke ++;

return foo_invoke;

}

I A variable can be declared static.

I If the variable is a declared inside a function then all the

invocation of the function uses the same variable.

I If it is declared outside every function then it is visible only

within that �le.



The static keyword

Syntax of usage

static declaration

static int x;

int foo()

{

static int foo_invoke=0;

foo_invoke ++;

return foo_invoke;

}

I A variable can be declared static.

I If the variable is a declared inside a function then all the

invocation of the function uses the same variable.

I If it is declared outside every function then it is visible only

within that �le.



The static keyword

Syntax of usage

static declaration

static int x;

int foo()

{

static int foo_invoke=0;

foo_invoke ++;

return foo_invoke;

}

I A variable can be declared static.

I If the variable is a declared inside a function then all the

invocation of the function uses the same variable.

I If it is declared outside every function then it is visible only

within that �le.



The extern declaration

Syntax

extern declaration;

I Says that the de�nition of the variable is somewhere else,

possible in a di�erent �le.

I Generally used only with variable declarations

I With function declaration has no e�ect, default declaration is

extern declaration.

I A variable can be declared extern many time but de�ned

only once.



The extern declaration

Syntax

extern declaration;

I Says that the de�nition of the variable is somewhere else,

possible in a di�erent �le.

I Generally used only with variable declarations

I With function declaration has no e�ect, default declaration is

extern declaration.

I A variable can be declared extern many time but de�ned

only once.



The extern declaration

Syntax

extern declaration;

I Says that the de�nition of the variable is somewhere else,

possible in a di�erent �le.

I Generally used only with variable declarations

I With function declaration has no e�ect, default declaration is

extern declaration.

I A variable can be declared extern many time but de�ned

only once.



The extern declaration

Syntax

extern declaration;

I Says that the de�nition of the variable is somewhere else,

possible in a di�erent �le.

I Generally used only with variable declarations

I With function declaration has no e�ect, default declaration is

extern declaration.

I A variable can be declared extern many time but de�ned

only once.



The extern declaration

Syntax

extern declaration;

I Says that the de�nition of the variable is somewhere else,

possible in a di�erent �le.

I Generally used only with variable declarations

I With function declaration has no e�ect, default declaration is

extern declaration.

I A variable can be declared extern many time but de�ned

only once.


