
Fundamentals of Computing: Lecture 30

Piyush P Kurur

O�ce no: 224

Dept. of Comp. Sci. and Engg.

IIT Kanpur

October 19, 2009

Summary of last class

I C programms can take command lines eg

$ progname a1 a2 .. an

int main(int argc, char **argv)

{

/* do something */

}

I The variable argc is one more than total arguments. in the

above example n + 1 and,

I argv[0] is progname, argv[1] is a1 etc argv[n] is an and

argv[n+1] is NULL.

Summary of last class

I C programms can take command lines eg

$ progname a1 a2 .. an

int main(int argc, char **argv)

{

/* do something */

}

I The variable argc is one more than total arguments. in the

above example n + 1 and,

I argv[0] is progname, argv[1] is a1 etc argv[n] is an and

argv[n+1] is NULL.

Summary of last class

I C programms can take command lines eg

$ progname a1 a2 .. an

int main(int argc, char **argv)

{

/* do something */

}

I The variable argc is one more than total arguments. in the

above example n + 1 and,

I argv[0] is progname, argv[1] is a1 etc argv[n] is an and

argv[n+1] is NULL.

Summary of last class

I C programms can take command lines eg

$ progname a1 a2 .. an

int main(int argc, char **argv)

{

/* do something */

}

I The variable argc is one more than total arguments. in the

above example n + 1 and,

I argv[0] is progname, argv[1] is a1 etc argv[n] is an and

argv[n+1] is NULL.

Summary continued sprintf and sscanf

int answer = 42;

char buf[100];

sprintf(buf, "The answer is %d", answer);

I sprintf takes a character array buf, a format string fmt and

other arguments and behaves like printf but prints stu� to

the string buf.

I sscanf takes a character array buf, a formats string fmt and

other arguments and behaves like scanf but scans stu� from

the string buf

Ex Write a command like program that prints the sum of its

command lines.

Summary continued sprintf and sscanf

int answer = 42;

char buf[100];

sprintf(buf, "The answer is %d", answer);

I sprintf takes a character array buf, a format string fmt and

other arguments and behaves like printf but prints stu� to

the string buf.

I sscanf takes a character array buf, a formats string fmt and

other arguments and behaves like scanf but scans stu� from

the string buf

Ex Write a command like program that prints the sum of its

command lines.

Summary continued sprintf and sscanf

int answer = 42;

char buf[100];

sprintf(buf, "The answer is %d", answer);

I sprintf takes a character array buf, a format string fmt and

other arguments and behaves like printf but prints stu� to

the string buf.

I sscanf takes a character array buf, a formats string fmt and

other arguments and behaves like scanf but scans stu� from

the string buf

Ex Write a command like program that prints the sum of its

command lines.

Summary continued sprintf and sscanf

int answer = 42;

char buf[100];

sprintf(buf, "The answer is %d", answer);

I sprintf takes a character array buf, a format string fmt and

other arguments and behaves like printf but prints stu� to

the string buf.

I sscanf takes a character array buf, a formats string fmt and

other arguments and behaves like scanf but scans stu� from

the string buf

Ex Write a command like program that prints the sum of its

command lines.

Summary continued sprintf and sscanf

int answer = 42;

char buf[100];

sprintf(buf, "The answer is %d", answer);

I sprintf takes a character array buf, a format string fmt and

other arguments and behaves like printf but prints stu� to

the string buf.

I sscanf takes a character array buf, a formats string fmt and

other arguments and behaves like scanf but scans stu� from

the string buf

Ex Write a command like program that prints the sum of its

command lines.

File input output

I How does one write into a �le ?

I How does one read from a �le.

I What is a �le ?

File input output

I How does one write into a �le ?

I How does one read from a �le.

I What is a �le ?

File input output

I How does one write into a �le ?

I How does one read from a �le.

I What is a �le ?

File input output

I How does one write into a �le ?

I How does one read from a �le.

I What is a �le ?

What is a �le ?

I Files provide way to organise data on the hard disk.

I It can be hard disk of usb stick or cdrom.

I In Unix everything (almost) is a �le.

What is a �le ?

I Files provide way to organise data on the hard disk.

I It can be hard disk of usb stick or cdrom.

I In Unix everything (almost) is a �le.

What is a �le ?

I Files provide way to organise data on the hard disk.

I It can be hard disk of usb stick or cdrom.

I In Unix everything (almost) is a �le.

What is a �le ?

I Files provide way to organise data on the hard disk.

I It can be hard disk of usb stick or cdrom.

I In Unix everything (almost) is a �le.

What is a �le ?

I Files provide way to organise data on the hard disk.

I It can be hard disk of usb stick or cdrom.

I In Unix everything (almost) is a �le.

File system and directories

I Files are organised into directores

I Directories are trees (rose trees) and Files are the leaves.

I The root directory is denoted by /.

I A �le or directory is completely speci�ed by its path from the

root eg /foo/bar/biz means the biz �le under the bar

directory under the foo directory under the root.

I You can also give relative path eg foo/bar means the bar

directory (or �le) under the foo directory under the current

directory.

I The special names . (dot) and .. means this director and

previous (or parent) directory.

File system and directories

I Files are organised into directores

I Directories are trees (rose trees) and Files are the leaves.

I The root directory is denoted by /.

I A �le or directory is completely speci�ed by its path from the

root eg /foo/bar/biz means the biz �le under the bar

directory under the foo directory under the root.

I You can also give relative path eg foo/bar means the bar

directory (or �le) under the foo directory under the current

directory.

I The special names . (dot) and .. means this director and

previous (or parent) directory.

File system and directories

I Files are organised into directores

I Directories are trees (rose trees) and Files are the leaves.

I The root directory is denoted by /.

I A �le or directory is completely speci�ed by its path from the

root eg /foo/bar/biz means the biz �le under the bar

directory under the foo directory under the root.

I You can also give relative path eg foo/bar means the bar

directory (or �le) under the foo directory under the current

directory.

I The special names . (dot) and .. means this director and

previous (or parent) directory.

File system and directories

I Files are organised into directores

I Directories are trees (rose trees) and Files are the leaves.

I The root directory is denoted by /.

I A �le or directory is completely speci�ed by its path from the

root eg /foo/bar/biz means the biz �le under the bar

directory under the foo directory under the root.

I You can also give relative path eg foo/bar means the bar

directory (or �le) under the foo directory under the current

directory.

I The special names . (dot) and .. means this director and

previous (or parent) directory.

File system and directories

I Files are organised into directores

I Directories are trees (rose trees) and Files are the leaves.

I The root directory is denoted by /.

I A �le or directory is completely speci�ed by its path from the

root eg /foo/bar/biz means the biz �le under the bar

directory under the foo directory under the root.

I You can also give relative path eg foo/bar means the bar

directory (or �le) under the foo directory under the current

directory.

I The special names . (dot) and .. means this director and

previous (or parent) directory.

File system and directories

I Files are organised into directores

I Directories are trees (rose trees) and Files are the leaves.

I The root directory is denoted by /.

I A �le or directory is completely speci�ed by its path from the

root eg /foo/bar/biz means the biz �le under the bar

directory under the foo directory under the root.

I You can also give relative path eg foo/bar means the bar

directory (or �le) under the foo directory under the current

directory.

I The special names . (dot) and .. means this director and

previous (or parent) directory.

File system and directories

I Files are organised into directores

I Directories are trees (rose trees) and Files are the leaves.

I The root directory is denoted by /.

I A �le or directory is completely speci�ed by its path from the

root eg /foo/bar/biz means the biz �le under the bar

directory under the foo directory under the root.

I You can also give relative path eg foo/bar means the bar

directory (or �le) under the foo directory under the current

directory.

I The special names . (dot) and .. means this director and

previous (or parent) directory.

Using a �le

I Open a �le

FILE *fopen(char *filename, char *mod);

I Use it

int getc(FILE*);

int fputc(int c,FILE *);

int fprintf(FILE *fp, char *fmt, ...);

int fscanf(FILE *fp, char *fmt, ...);

I Close it. int fclose(FILE *);

Using a �le

I Open a �le

FILE *fopen(char *filename, char *mod);

I Use it

int getc(FILE*);

int fputc(int c,FILE *);

int fprintf(FILE *fp, char *fmt, ...);

int fscanf(FILE *fp, char *fmt, ...);

I Close it. int fclose(FILE *);

Using a �le

I Open a �le

FILE *fopen(char *filename, char *mod);

I Use it

int getc(FILE*);

int fputc(int c,FILE *);

int fprintf(FILE *fp, char *fmt, ...);

int fscanf(FILE *fp, char *fmt, ...);

I Close it. int fclose(FILE *);

Using a �le

I Open a �le

FILE *fopen(char *filename, char *mod);

I Use it

int getc(FILE*);

int fputc(int c,FILE *);

int fprintf(FILE *fp, char *fmt, ...);

int fscanf(FILE *fp, char *fmt, ...);

I Close it. int fclose(FILE *);

#include <stdio.h>

int main(int argc, char **argv)

{

int c;

FILE *fp;

for(int i = 1; i < argc; i++){

fp = fopen(argv[i], "r");

if(fp == NULL){

fprintf(stderr, "%s: cannot open %s\n", argv[0],argv[i]);

continue;

}

while((c = getc(fp)) != EOF){

putchar(c);

}

fclose(fp);

}

return 0;

}

