
Fundamentals of Computing: Lecture 15

Piyush P Kurur
Office no: 224

Dept. of Comp. Sci. and Engg.
IIT Kanpur

September 2, 2009



Summary of the previous lecture

I A pointer is an abstraction of memory address.

I To declare use T *ptr;

I A pointer to type T has as value an address of a memory cell
capable of storing a value of type T.

I The expression *ptr is the value stored at the location
pointed by ptr. *ptr is also an l-value and can be assigned.

I For a variable x, &x is the address of the variable. The
expression &x is not an l-value.



Summary of the previous lecture

I A pointer is an abstraction of memory address.

I To declare use T *ptr;

I A pointer to type T has as value an address of a memory cell
capable of storing a value of type T.

I The expression *ptr is the value stored at the location
pointed by ptr. *ptr is also an l-value and can be assigned.

I For a variable x, &x is the address of the variable. The
expression &x is not an l-value.



Summary of the previous lecture

I A pointer is an abstraction of memory address.

I To declare use T *ptr;

I A pointer to type T has as value an address of a memory cell
capable of storing a value of type T.

I The expression *ptr is the value stored at the location
pointed by ptr. *ptr is also an l-value and can be assigned.

I For a variable x, &x is the address of the variable. The
expression &x is not an l-value.



Summary of the previous lecture

I A pointer is an abstraction of memory address.

I To declare use T *ptr;

I A pointer to type T has as value an address of a memory cell
capable of storing a value of type T.

I The expression *ptr is the value stored at the location
pointed by ptr. *ptr is also an l-value and can be assigned.

I For a variable x, &x is the address of the variable. The
expression &x is not an l-value.



Summary of the previous lecture

I A pointer is an abstraction of memory address.

I To declare use T *ptr;

I A pointer to type T has as value an address of a memory cell
capable of storing a value of type T.

I The expression *ptr is the value stored at the location
pointed by ptr. *ptr is also an l-value and can be assigned.

I For a variable x, &x is the address of the variable. The
expression &x is not an l-value.



Summary of the previous lecture

I A pointer is an abstraction of memory address.

I To declare use T *ptr;

I A pointer to type T has as value an address of a memory cell
capable of storing a value of type T.

I The expression *ptr is the value stored at the location
pointed by ptr. *ptr is also an l-value and can be assigned.

I For a variable x, &x is the address of the variable. The
expression &x is not an l-value.



Pointer arithmetic

a−i . . . a−1 a0 a1 . . . ai

ptr - i
. . .

ptr - 1

·ptr

ptr + 1
. . .

ptr + i



Pointer arithmetic

a−i . . . a−1 a0 a1 . . . ai

ptr - i
. . .

ptr - 1

·ptr

ptr + 1

. . .

ptr + i



Pointer arithmetic

a−i . . . a−1 a0 a1 . . . ai

ptr - i
. . .

ptr - 1

·ptr

ptr + 1
. . .

ptr + i



Pointer arithmetic

a−i . . . a−1 a0 a1 . . . ai

ptr - i
. . .

ptr - 1

·ptr

ptr + 1
. . .

ptr + i



Pointer arithmetic

a−i . . . a−1 a0 a1 . . . ai

ptr - i
. . .

ptr - 1

·ptr

ptr + 1
. . .

ptr + i



Pointer arithmetic

a−i . . . a−1 a0 a1 . . . ai

ptr - i
. . .

ptr - 1

·ptr

ptr + 1
. . .

ptr + i



What operations are allowed on pointers?

I One can add any integer to a pointer of any type ptr + i is
the pointer to the ith location starting from ptr.

I One can subtracte any integer to a pointer of any type

I If ptr1 and ptr2 are pointers to the same type then
ptr1 - ptr2. It is the number of cells between ptr1 and
ptr2.

I ptr++, ptr-- etc makes sense because ptr +1 and ptr -1

makes sense

a0 a1 a2 . . . ai

·

ptr

ptr + +ptr + +ptr + +ptr + +



What operations are allowed on pointers?

I One can add any integer to a pointer of any type ptr + i is
the pointer to the ith location starting from ptr.

I One can subtracte any integer to a pointer of any type

I If ptr1 and ptr2 are pointers to the same type then
ptr1 - ptr2. It is the number of cells between ptr1 and
ptr2.

I ptr++, ptr-- etc makes sense because ptr +1 and ptr -1

makes sense

a0 a1 a2 . . . ai

·

ptr

ptr + +ptr + +ptr + +ptr + +



What operations are allowed on pointers?

I One can add any integer to a pointer of any type ptr + i is
the pointer to the ith location starting from ptr.

I One can subtracte any integer to a pointer of any type

I If ptr1 and ptr2 are pointers to the same type then
ptr1 - ptr2. It is the number of cells between ptr1 and
ptr2.

I ptr++, ptr-- etc makes sense because ptr +1 and ptr -1

makes sense

a0 a1 a2 . . . ai

·

ptr
ptr + +

ptr + +ptr + +ptr + +



What operations are allowed on pointers?

I One can add any integer to a pointer of any type ptr + i is
the pointer to the ith location starting from ptr.

I One can subtracte any integer to a pointer of any type

I If ptr1 and ptr2 are pointers to the same type then
ptr1 - ptr2. It is the number of cells between ptr1 and
ptr2.

I ptr++, ptr-- etc makes sense because ptr +1 and ptr -1

makes sense

a0 a1 a2 . . . ai

·

ptr

ptr + +ptr + +ptr + +ptr + +



What operations are allowed on pointers?

I One can add any integer to a pointer of any type ptr + i is
the pointer to the ith location starting from ptr.

I One can subtracte any integer to a pointer of any type

I If ptr1 and ptr2 are pointers to the same type then
ptr1 - ptr2. It is the number of cells between ptr1 and
ptr2.

I ptr++, ptr-- etc makes sense because ptr +1 and ptr -1

makes sense

a0 a1 a2 . . . ai

·

ptr

ptr + +

ptr + +

ptr + +ptr + +



What operations are allowed on pointers?

I One can add any integer to a pointer of any type ptr + i is
the pointer to the ith location starting from ptr.

I One can subtracte any integer to a pointer of any type

I If ptr1 and ptr2 are pointers to the same type then
ptr1 - ptr2. It is the number of cells between ptr1 and
ptr2.

I ptr++, ptr-- etc makes sense because ptr +1 and ptr -1

makes sense

a0 a1 a2 . . . ai

·

ptr

ptr + +ptr + +ptr + +ptr + +



What operations are allowed on pointers?

I One can add any integer to a pointer of any type ptr + i is
the pointer to the ith location starting from ptr.

I One can subtracte any integer to a pointer of any type

I If ptr1 and ptr2 are pointers to the same type then
ptr1 - ptr2. It is the number of cells between ptr1 and
ptr2.

I ptr++, ptr-- etc makes sense because ptr +1 and ptr -1

makes sense

a0 a1 a2 . . . ai

·

ptr

ptr + +ptr + +

ptr + +

ptr + +



What operations are allowed on pointers?

I One can add any integer to a pointer of any type ptr + i is
the pointer to the ith location starting from ptr.

I One can subtracte any integer to a pointer of any type

I If ptr1 and ptr2 are pointers to the same type then
ptr1 - ptr2. It is the number of cells between ptr1 and
ptr2.

I ptr++, ptr-- etc makes sense because ptr +1 and ptr -1

makes sense

a0 a1 a2 . . . ai

·

ptr

ptr + +ptr + +ptr + +ptr + +



What operations are allowed on pointers?

I One can add any integer to a pointer of any type ptr + i is
the pointer to the ith location starting from ptr.

I One can subtracte any integer to a pointer of any type

I If ptr1 and ptr2 are pointers to the same type then
ptr1 - ptr2. It is the number of cells between ptr1 and
ptr2.

I ptr++, ptr-- etc makes sense because ptr +1 and ptr -1

makes sense

a0 a1 a2 . . . ai

·

ptr

ptr + +ptr + +ptr + +

ptr + +



What operations are allowed on pointers?

I One can add any integer to a pointer of any type ptr + i is
the pointer to the ith location starting from ptr.

I One can subtracte any integer to a pointer of any type

I If ptr1 and ptr2 are pointers to the same type then
ptr1 - ptr2. It is the number of cells between ptr1 and
ptr2.

I ptr++, ptr-- etc makes sense because ptr +1 and ptr -1

makes sense

a0 a1 a2 . . . ai

·

ptr

ptr + +ptr + +ptr + +ptr + +



Relation with arrays

Consider

int a[100];

I The value a is the address of the first element.

I The value a + i is equivalent to &a[i]

I More interestingly a[i] is same as *(a+i)

int a[100], *ptr;

for(ptr=a; ptr - a < 100; ptr++)

{

*ptr = 0;

}



Relation with arrays

Consider

int a[100];

I The value a is the address of the first element.

I The value a + i is equivalent to &a[i]

I More interestingly a[i] is same as *(a+i)

int a[100], *ptr;

for(ptr=a; ptr - a < 100; ptr++)

{

*ptr = 0;

}



Relation with arrays

Consider

int a[100];

I The value a is the address of the first element.

I The value a + i is equivalent to &a[i]

I More interestingly a[i] is same as *(a+i)

int a[100], *ptr;

for(ptr=a; ptr - a < 100; ptr++)

{

*ptr = 0;

}



Relation with arrays

Consider

int a[100];

I The value a is the address of the first element.

I The value a + i is equivalent to &a[i]

I More interestingly a[i] is same as *(a+i)

int a[100], *ptr;

for(ptr=a; ptr - a < 100; ptr++)

{

*ptr = 0;

}



Relation with arrays

Consider

int a[100];

I The value a is the address of the first element.

I The value a + i is equivalent to &a[i]

I More interestingly a[i] is same as *(a+i)

int a[100], *ptr;

for(ptr=a; ptr - a < 100; ptr++)

{

*ptr = 0;

}


