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| is obtained by parameterisation (i.e. replacing constants of
¢ by variables)

v

The condition C is the negation of parameterisation.

v

Initialise variables so that / is true in the base case

v

Design the body S to preserve the validity of /.
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Finding the smallest in a sequence of n numbers
The desired condition is

¢ =s=min{a[0],...,a[n — 1]} (n is a constant here).
Parameterising we get the invariant
li = s =min{a[0],...,a[i —1]}.
Note that

So the condition Cis i # n.
Hence the loop.

s = al0];

i=1;

while( i '=n )

{
if( s > alil ) s = alil;
i++;
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Let us define what is sorted array

SortedArray (a) = Vi 0 </ < length (a) — 1 = a[i] < a[i + 1].

Sorted (a,s) =Vi0<i<s= ali] <a[i+1]



Choose the invariant Sorted (a, i) for a parameter i.

i=0;

while( i != n)

{
S; /* Do something to restore invariant */
i++;
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Choose the invariant Sorted (a, i) for a parameter i.

i=0;

while( i != n)

{
S; /* Do something to restore invariant */
i++;

}

S itself is a loop statement.

Sorted’'(a,r, k) =Vj0<j<ralj]<aj+1])Vvj=k-1

k = i+1;

while( k !'= 0 )

{
if( alk-1] > alk] ) /* swap alk-1] and alk] */
k——;

}



