
Fundamentals of Computing: Lecture 12

Piyush P Kurur
Office no: 224

Dept. of Comp. Sci. and Engg.
IIT Kanpur

August 24, 2009

Summary of the last class

while(C)

{ /* invariant is a condition that is true here */

S

}

How to design loop?

I Write down the desired outcome ϕ.

I Choose a loop invariant I and a loop condition C such that
I ∧ ¬C ⇒ ϕ.

I I is obtained by parameterisation (i.e. replacing constants of
ϕ by variables)

I The condition C is the negation of parameterisation.

I Initialise variables so that I is true in the base case

I Design the body S to preserve the validity of I .

Summary of the last class

while(C)

{ /* invariant is a condition that is true here */

S

}

How to design loop?

I Write down the desired outcome ϕ.

I Choose a loop invariant I and a loop condition C such that
I ∧ ¬C ⇒ ϕ.

I I is obtained by parameterisation (i.e. replacing constants of
ϕ by variables)

I The condition C is the negation of parameterisation.

I Initialise variables so that I is true in the base case

I Design the body S to preserve the validity of I .

Summary of the last class

while(C)

{ /* invariant is a condition that is true here */

S

}

How to design loop?

I Write down the desired outcome ϕ.

I Choose a loop invariant I and a loop condition C such that
I ∧ ¬C ⇒ ϕ.

I I is obtained by parameterisation (i.e. replacing constants of
ϕ by variables)

I The condition C is the negation of parameterisation.

I Initialise variables so that I is true in the base case

I Design the body S to preserve the validity of I .

Summary of the last class

while(C)

{ /* invariant is a condition that is true here */

S

}

How to design loop?

I Write down the desired outcome ϕ.

I Choose a loop invariant I and a loop condition C such that
I ∧ ¬C ⇒ ϕ.

I I is obtained by parameterisation (i.e. replacing constants of
ϕ by variables)

I The condition C is the negation of parameterisation.

I Initialise variables so that I is true in the base case

I Design the body S to preserve the validity of I .

Summary of the last class

while(C)

{ /* invariant is a condition that is true here */

S

}

How to design loop?

I Write down the desired outcome ϕ.

I Choose a loop invariant I and a loop condition C such that
I ∧ ¬C ⇒ ϕ.

I I is obtained by parameterisation (i.e. replacing constants of
ϕ by variables)

I The condition C is the negation of parameterisation.

I Initialise variables so that I is true in the base case

I Design the body S to preserve the validity of I .

Summary of the last class

while(C)

{ /* invariant is a condition that is true here */

S

}

How to design loop?

I Write down the desired outcome ϕ.

I Choose a loop invariant I and a loop condition C such that
I ∧ ¬C ⇒ ϕ.

I I is obtained by parameterisation (i.e. replacing constants of
ϕ by variables)

I The condition C is the negation of parameterisation.

I Initialise variables so that I is true in the base case

I Design the body S to preserve the validity of I .

Finding the smallest in a sequence of n numbers
The desired condition is

ϕ ≡ s = min{a[0], . . . , a[n − 1]} (n is a constant here).

Parameterising we get the invariant

Ii ≡ s = min{a[0], . . . , a[i − 1]}.

Note that
Ii ∧ (i = n)⇒ ϕ.

So the condition C is i 6= n.
Hence the loop.

s = a[0];

i = 1;

while(i != n)

{

if(s > a[i]) s = a[i];

i++;

}

Finding the smallest in a sequence of n numbers
The desired condition is

ϕ ≡ s = min{a[0], . . . , a[n − 1]} (n is a constant here).

Parameterising we get the invariant

Ii ≡ s = min{a[0], . . . , a[i − 1]}.

Note that
Ii ∧ (i = n)⇒ ϕ.

So the condition C is i 6= n.
Hence the loop.

s = a[0];

i = 1;

while(i != n)

{

if(s > a[i]) s = a[i];

i++;

}

Finding the smallest in a sequence of n numbers
The desired condition is

ϕ ≡ s = min{a[0], . . . , a[n − 1]} (n is a constant here).

Parameterising we get the invariant

Ii ≡ s = min{a[0], . . . , a[i − 1]}.

Note that
Ii ∧ (i = n)⇒ ϕ.

So the condition C is i 6= n.
Hence the loop.

s = a[0];

i = 1;

while(i != n)

{

if(s > a[i]) s = a[i];

i++;

}

Sorting

Let us define what is sorted array

SortedArray (a) ≡ ∀i 0 ≤ i < length (a)− 1⇒ a[i] ≤ a[i + 1].

Sorted (a, s) ≡ ∀i 0 ≤ i < s ⇒ a[i] ≤ a[i + 1]

Sorting

Let us define what is sorted array

SortedArray (a) ≡ ∀i 0 ≤ i < length (a)− 1⇒ a[i] ≤ a[i + 1].

Sorted (a, s) ≡ ∀i 0 ≤ i < s ⇒ a[i] ≤ a[i + 1]

Choose the invariant Sorted (a, i) for a parameter i .

i = 0;

while(i != n)

{

S; /* Do something to restore invariant */

i++;

}

S itself is a loop statement.

Sorted′(a, r , k) ≡ ∀j 0 ≤ j < r a[j] ≤ a[j + 1]) ∨ j = k − 1

k = i+1;

while(k != 0)

{

if(a[k-1] > a[k]) /* swap a[k-1] and a[k] */

k--;

}

Choose the invariant Sorted (a, i) for a parameter i .

i = 0;

while(i != n)

{

S; /* Do something to restore invariant */

i++;

}

S itself is a loop statement.

Sorted′(a, r , k) ≡ ∀j 0 ≤ j < r a[j] ≤ a[j + 1]) ∨ j = k − 1

k = i+1;

while(k != 0)

{

if(a[k-1] > a[k]) /* swap a[k-1] and a[k] */

k--;

}

