Fundamentals of Computing: Lecture 12

Piyush P Kurur
Office no: 224
Dept. of Comp. Sci. and Engg.
T Kanpur

August 24, 2009

Summary of the last class

while(C)
{ /* invariant is a condition that is true here */
S

How to design loop?

» Write down the desired outcome .

Summary of the last class

while(C)
{ /* invariant is a condition that is true here */
S

How to design loop?

» Write down the desired outcome .

» Choose a loop invariant / and a loop condition C such that
IN=C = o

Summary of the last class

while(C)

{ /* invariant is a condition that is true here */
S

How to design loop?

» Write down the desired outcome .

» Choose a loop invariant / and a loop condition C such that
IN=C = o

» | is obtained by parameterisation (i.e. replacing constants of
¢ by variables)

Summary of the last class

while(C)
{ /* invariant is a condition that is true here */
S

How to design loop?

v

Write down the desired outcome .

v

Choose a loop invariant / and a loop condition C such that
IN=C = o

v

| is obtained by parameterisation (i.e. replacing constants of
¢ by variables)

v

The condition C is the negation of parameterisation.

Summary of the last class

while(C)
{ /* invariant is a condition that is true here */
S

How to design loop?

» Write down the desired outcome .

» Choose a loop invariant / and a loop condition C such that
IN=C = o

» | is obtained by parameterisation (i.e. replacing constants of
¢ by variables)

» The condition C is the negation of parameterisation.

> Initialise variables so that / is true in the base case

Summary of the last class

while(C)
{ /* invariant is a condition that is true here */
S

How to design loop?

v

Write down the desired outcome .

v

Choose a loop invariant / and a loop condition C such that
IN=C = o

v

| is obtained by parameterisation (i.e. replacing constants of
¢ by variables)

v

The condition C is the negation of parameterisation.

v

Initialise variables so that / is true in the base case

v

Design the body S to preserve the validity of /.

Finding the smallest in a sequence of n numbers
The desired condition is

¢ =s=min{a[0],...,a[n — 1]} (n is a constant here).

Finding the smallest in a sequence of n numbers
The desired condition is

¢ =s=min{a[0],...,a[n — 1]} (n is a constant here).
Parameterising we get the invariant

li = s =min{a[0],...,a[i —1]}.

Finding the smallest in a sequence of n numbers
The desired condition is

¢ =s=min{a[0],...,a[n — 1]} (n is a constant here).
Parameterising we get the invariant
li = s =min{a[0],...,a[i —1]}.
Note that

So the condition Cis i # n.
Hence the loop.

s = al0];

i=1;

while(i '=n)

{
if(s > alil) s = alil;
i++;

3

Sorting

Let us define what is sorted array

SortedArray (a) = Vi 0 </ < length (a) — 1 = a[i] < a[i + 1].

Sorting

Let us define what is sorted array

SortedArray (a) = Vi 0 </ < length (a) — 1 = a[i] < a[i + 1].

Sorted (a,s) =Vi0<i<s= ali] <a[i+1]

Choose the invariant Sorted (a, i) for a parameter i.

i=0;

while(i != n)

{
S; /* Do something to restore invariant */
i++;

I

Choose the invariant Sorted (a, i) for a parameter i.

i=0;

while(i != n)

{
S; /* Do something to restore invariant */
i++;

}

S itself is a loop statement.

Sorted’'(a,r, k) =Vj0<j<ralj]<aj+1])Vvj=k-1

k = i+1;

while(k !'= 0)

{
if(alk-1] > alk]) /* swap alk-1] and alk] */
k——;

}

