
Fundamentals of Computing: Lecture 10

Piyush P Kurur
Office no: 224

Dept. of Comp. Sci. and Engg.
IIT Kanpur

August 19, 2009

Summary of Function

I A function takes few arguments and returns a value.

I The function declaration tells us/compiler what are the types
of the argument of the function and what is its return type.

I The function definition says what the function actually does.

I C follows call be value and hence change in the argument of
the function does not effect the callee.

I Function can call other functions even itself.

Summary of Function

I A function takes few arguments and returns a value.

I The function declaration tells us/compiler what are the types
of the argument of the function and what is its return type.

I The function definition says what the function actually does.

I C follows call be value and hence change in the argument of
the function does not effect the callee.

I Function can call other functions even itself.

Summary of Function

I A function takes few arguments and returns a value.

I The function declaration tells us/compiler what are the types
of the argument of the function and what is its return type.

I The function definition says what the function actually does.

I C follows call be value and hence change in the argument of
the function does not effect the callee.

I Function can call other functions even itself.

Summary of Function

I A function takes few arguments and returns a value.

I The function declaration tells us/compiler what are the types
of the argument of the function and what is its return type.

I The function definition says what the function actually does.

I C follows call be value and hence change in the argument of
the function does not effect the callee.

I Function can call other functions even itself.

Summary of Function

I A function takes few arguments and returns a value.

I The function declaration tells us/compiler what are the types
of the argument of the function and what is its return type.

I The function definition says what the function actually does.

I C follows call be value and hence change in the argument of
the function does not effect the callee.

I Function can call other functions even itself.

Example of a function declaration

void hanoi(int, char, char,char);

or

void hanoi(int, char a, char b, char c);

Example of a function definition.

void hanoi(int n, char src, char inter, char dest)
{

if (n <= 0) return;
hanoi(n-1 , src, dest, inter);
printf("(%d) %c -> %c\n", n, src, dest);
hanoi(n-1, inter, src, dest);

}

int max (int a, int b)
{
if (a < b) return b;
else return a;

}

Function calls are returns

When a function is called

/* do some thing */
foo(2+4, y);
/* do something else */

I Control goes to the begining of the functions.

I Fresh variables are created for each parameters whose value is
the respective value when called.

Function calls are returns

When a function is called

/* do some thing */
foo(2+4, y);
/* do something else */

I Control goes to the begining of the functions.

I Fresh variables are created for each parameters whose value is
the respective value when called.

Function calls are returns

When a function is called

/* do some thing */
foo(2+4, y);
/* do something else */

I Control goes to the begining of the functions.

I Fresh variables are created for each parameters whose value is
the respective value when called.

When return is encountered

I The control goes back to where it was called.

I If the return is of the form return expr the program behaves
as if the value of expr is substituted in the place where the
function is called.

printf("%d", fact(3));
/* some more stuff */

int fact(n)
{
if (n < 2) return 1;
else return n * fact(n-1);

}

When return is encountered

I The control goes back to where it was called.

I If the return is of the form return expr the program behaves
as if the value of expr is substituted in the place where the
function is called.

printf("%d", fact(3));
/* some more stuff */

int fact(n)
{
if (n < 2) return 1;
else return n * fact(n-1);

}

When return is encountered

I The control goes back to where it was called.

I If the return is of the form return expr the program behaves
as if the value of expr is substituted in the place where the
function is called.

printf("%d", fact(3));
/* some more stuff */

int fact(n)
{
if (n < 2) return 1;
else return n * fact(n-1);

}

Variable declaration and scope

#include <stdio.h>

int global=0;
void foo(int t);
int main()
{
printf("in main global = %d\n", global);
foo(0); global = 42; foo(1);
int global = 100;
printf("in main after dec global = %d\n",global);
foo(2); global=10; foo(3);
printf("in main after dec and update global = %d\n",global);

}
void foo(int t)
{
int local = 120;
printf("in foo(%d) global = %d, local = %d\n", t, global, local);

}

Variable scope

I A variable comes to life when it is declared.

I A variable lives as long as the smallest block that contains its
declartion is active

I A variable outside every functions is global and lives forever.

I Local variables have precedence over global ones.

Variables in for loop

for(int i = 0; i < 100; i++)
{

/* do something */
}

The variable i is valid only within the for loop.

Variables in for loop

for(int i = 0; i < 100; i++)
{

/* do something */
}

The variable i is valid only within the for loop.

Variables inside function

int foo(int x)
{

/* some stuff */
float local;

foo(bar);

}

I The variable is local to the function.

I For a new call of foo there is a new variable named local valid
for that called

Variables inside function

int foo(int x)
{

/* some stuff */
float local;

foo(bar);

}

I The variable is local to the function.

I For a new call of foo there is a new variable named local valid
for that called

Variables inside function

int foo(int x)
{

/* some stuff */
float local;

foo(bar);

}

I The variable is local to the function.

I For a new call of foo there is a new variable named local valid
for that called

