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The function declaration tells us/compiler what are the types
of the argument of the function and what is its return type.
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The function definition says what the function actually does.
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C follows call be value and hence change in the argument of
the function does not effect the callee.

v

Function can call other functions even itself.



Example of a function declaration

void hanoi(int, char, char,char);

or

void hanoi(int, char a, char b, char c);
Example of a function definition.

void hanoi(int n, char src, char inter, char dest)
{
if ( n <= 0 ) return;
hanoi(n-1 , src, dest, inter);
printf (" (%d) %c -> %c\n", n, src, dest);
hanoi( n-1, inter, src, dest);

int max (int a, int b)

{
if (a < b) return b;

else return a;

}
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When return is encountered

» The control goes back to where it was called.

» If the return is of the form return expr the program behaves
as if the value of expr is substituted in the place where the
function is called.

printf ("%d", fact(3));
/* some more stuff */

int fact(n)
{
if (n < 2) return 1;
else return n * fact(n-1);

}



Variable declaration and scope

#include <stdio.h>

int global=0;
void foo(int t);
int main()
{
printf ("in main global = %d\n", global);
foo(0); global = 42; foo(1);
int global = 100;
printf("in main after dec global = %d\n",global);
foo(2); global=10; foo(3);
printf("in main after dec and update global = %d\n",glol
}
void foo(int t)
{
int local = 120;
printf("in foo(%d) global = %d, local = %d\n", t, globa
1



Variable scope

» A variable comes to life when it is declared.

» A variable lives as long as the smallest block that contains its
declartion is active

» A variable outside every functions is global and lives forever.

» Local variables have precedence over global ones.



Variables in for loop

for(int 1 = 0; i < 100; i++)
{
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}



Variables in for loop

for(int 1 = 0; i < 100; i++)
{

/* do something */
}

The variable i is valid only within the for loop.
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Variables inside function

int foo(int x)

{
/* some stuff */
float local;

foo(bar);

» The variable is local to the function.

» For a new call of foo there is a new variable named local valid
for that called



