Practise problems on Time complexity of an algorithm

1. Analyse the number of instructions executed in the following recursive algorithm for computing \(n \)th Fibonacci numbers as a function of \(n \)

```java
public static int fib(int n)
{
    if(n==0) return 1;
    else if(n==1) return 1;
    else return(fib(n-1) + fib(n-2));
}
```

```java
public static void main(String args[])
{
    int n = Integer.parseInt(args[0]);
    System.out.println(fib(n));
}
```

Answer: We proceed similar to the analysis of merge sort. We consider the recursion tree for \(\text{fib}(n) \). We can observe that for \(n > 1 \), the number of instructions executed during \(\text{fib}(n) \) is equal to the number of instructions executed during \(\text{fib}(n-1) \) plus the number of instructions executed during \(\text{fib}(n-2) \) and two or three instructions in addition. Hence, for each node in the recursion tree, the number of instructions executed (excluding those which are executed during its children) is just a constant. So the total number of instructions executed is \(c \) times the number of nodes in the recursion tree of \(\text{fib}(n) \). We shall now try to estimate \(T(n) \) up to some constant multiplicative factor. Let \(T(n) \) be the number of nodes in the recursion tree for \(\text{fib}(n) \). \(T(n) \) can be expressed by the following equation.

\[
T(n) = \begin{cases}
1 & \text{for } n = 0,1 \\
T(n-1) + T(n-2) + 1 & \text{for } n > 1
\end{cases}
\]

Let us define function \(G(n) \) as \(T(n) + 1 \). It is easy to observe that \(G(0) = 2, G(1) = 2, \) and \(G(n) = G(n-1) + G(n-2) \) for \(n > 1 \). This equation looks familiar. It is the same as that of fibonacci number except that it differs at the base cases - \(n = \{0,1\} \). It is easy to prove by induction on \(n \) that for all \(n \geq 1 \),

\[
\text{Fibonacci}(n) < G(n) < 4\text{Fibonacci}(n) \quad (1)
\]

Using Equation 1 and the relation between \(T(n) \) and \(G(n) \), it follows that \(\text{Fibonacci}(n) - 1 < T(n) < 4\text{Fibonacci}(n) - 1 \). Hence the number of instructions executed during \(\text{fib}(n) \) is within some constant multiple of \(n \)th Fibonacci number.

The motivated students may try to analyse how big \(n \)th Fibonacci numbers might be. In fact, it grows exponentially with \(n \). Here is a sketch of the
proof (this is optional and won’t be required for end semester exam). Show that \(F(n) \geq H(n) \) for all \(n \geq 2 \) where \(H(1) = H(2) = 1 \), and for \(n > 2 \), \(H(n) \) is defined as follows.

\[
H(n) = 2H(n-2)
\]

By unfolding the above recurrence, it follows easily that \(H(n) \) grows exponentially with \(n \).

2. Analyse the number of instructions executed in the following iterative algorithm for computing \(n \)th Fibonacci numbers as a function of \(n \)

```java
public static void main(String args[])
{
    int n = Integer.parseInt(args[0]);
    if(n==0) System.out.println(0);
    else if(n==1) System.out.println(1);
    else
    {
        int fib1 = 0;
        int fib2 =1;
        for(int i=2; i<=n;i=i+1)
        {
            int temp = fib1+fib2;
            fib1 = fib2;
            fib2 = temp;
        }
        System.out.println(fib2);
    }
}
```

Answer: The algorithm takes \(cn \) instructions for some positive constant \(c \).

3. Design an algorithm which computes \(3^n \) using only \(c \log n \) instructions for some positive constant \(c \).

Hint: Write a method based on the following recursive formulation of \(3^n \) carefully.

\[
3^n = \begin{cases}
1 & \text{if } n = 0 \\
3^{n/2} * 3^{n/2} & \text{if } n\%2 == 0 \\
3^{n/2} * 3^{n/2} * 3 & \text{if } n\%2 == 1
\end{cases}
\]

4. Given an array \(A \) which stores 0 and 1, such that each entry containing 0 appears before all those entries containing 1. In other words, it is like \(\{0,0,0,...,0,0,1,1,...,111\} \). Design an algorithm to find out the small index \(i \) in the array \(A \) such that \(A[i] = 1 \) using \(c \log n \) instructions in the worst case for some positive constant \(c \).

Hint: exploit the idea used in binary search. The method is described below.
public static void First_index_with_one(int[] A)
{
 if(A[0]==1) System.out.println(‘The first index storing one is 0’);
 else if(A[(A.length-1)]==0) System.out.println(‘All entries of A are 0’);
 else //There is a unique i such that A[i-1]==0 and A[i]==1
 { int left = 0; int right=A.length-1;
 boolean Isfound=false;
 while(Isfound==false)
 { mid = (left+right)/2;
 if(A[mid]==0) left = mid+1;
 else
 { if(A[mid-1]==0) is_found=true;
 else right=mid-1;
 }
 }
 System.out.println(‘The first index containing one is ’+mid);
 }
}

5. How many instructions are executed when we multiply $n \times m$ matrix A with $m \times r$ matrix B?

Answer: The number of instructions executed is cmr for some positive constant c.

Explanation: We need to analyse the algorithm for multiplying two matrices as discussed in one of the lecture. The final matrix will be $n \times r$. For each entry of the final matrix we perform vector product of one row of matrix A with one column of B, hence m multiplications and $m-1$ additions. Thus cm instructions are executed for computing one entry of the final matrix. Hence the total number of instructions for computing product of A and B is cmr.

3