ESc101 : Fundamental of Computing

I Semester 2008-09

Lecture 37

- Analyzing the efficiency of algorithms.
- Algorithms compared
- Sequential Search and Binary search
- GCD_fast and GCD_slow
- Merge Sort and Selection Sort

Problem 1: Searching

Comparing Searching algorithms

Searching for an element \mathbf{x} in a sorted array of \mathbf{n} numbers.

- Sequential Search
- Binary search

Experimental observation : Binary search has been found to be much faster than sequential search. (given as assignment during Lab 11 for Thursday and Friday)

Problem 2 : Computing GCD of two positive numbers

Comparing Two GCD algorithms

We gave two algorithms for GCD computation long back in this course.

- GCD_fast : based on $\%$
- GCD_slow : based on subtraction

The code of these algorithms is shown on the following page.

Why is GCD_fast faster than GCD_slow ?

```
//Assume m>=n
int GCD_fast(m,n)
{ while(n!=0)
    { rem = m%n;
        m = n;
        n = rem;
    }
    return m;
}
int GCD_slow(m,n)
{ while(n!=0)
    { diff = m-n;
        if(diff>=n) m = diff
        else {m=n; n = diff;}
    }
return m;
}
```


Problem 3 : Sorting

Given an array storing \mathbf{n} numbers, sort them

Comparing Three sorting algorithms

Experimental Observations

- Quick sort is more efficient than merge sort
- Merge sort is more efficient than Selection Sort

The code is given in Three_sorting_algos.java

What is the reason for different running times?

Given that all algorithms (for searching, GCD, sorting)

- have same input and output
- are executed in same environment (machine, operating system)

We need to analyze the number of steps/instruction taken by each algorithm for a problem

Algorithm design is incomplete until you analyze its running time

How many steps/instructions are executed by the following loop

```
for(int i=1; i<=n; i=i+1)
{
    sum = sum + i;
}
```

No. of Steps =

How many steps/instructions are executed by the following loop

```
for(int i=1; i<=n; i=i+1)
{
    sum = sum + i;
}
```

No. of Steps $=1+3 n+1$

How many steps/instructions are executed by the following loop

```
for(int i=1; i<=n; i=i+1)
{
    sum = sum + i;
}
```

For sake of simplicity, we can say that
No. of Steps $=a n+b$, for some positive constants a, b

How many steps/instructions are executed by the following loop

```
for(int n=1;n<=m;n=n+1)
{
    for(int i=1; i<=n; i=i+1)
    {
    sum = sum + i;
    }
```

\}

No. of Steps =

How many steps/instructions are executed by the following loop

```
for(int n=1;n<=m;n=n+1)
{
    for(int i=1; i<=n; i=i+1)
    {
    sum = sum + i;
    }
```

\}

No. of Steps $=1+m+\sum_{n=1}^{n=m}(1+3 n+1)+m=3 / 2 m^{2}+11 / 2 m+1$

How many steps/instructions are executed by the following loop

```
for(int n=1;n<=m;n=n+1)
{
    for(int i=1; i<=n; i=i+1)
    {
    sum = sum + i;
    }
```

\}

For sake of simplicity, we can say that
No. of Steps $=a m^{2}+b m+c$, for some constants $\mathrm{a}, \mathrm{b}, \mathrm{c}$

Analysis of Number of instructions of an algorithm

How many instructions are executed ...

- to search a number in an unsorted array storing n numbers.
- to search a number in a sorted array of m numbers.
- to sort n numbers by selection sort.
- to sort n numbers by merge sort.

Analysis of Number of instructions of an algorithm

How many instructions are executed ...

- to search a number in an unsorted array storing n numbers.
- to search a number in a sorted array of m numbers.
- to sort n numbers by selection sort.
- to sort n numbers by merge sort.

Observation : it is function of input size

We shall focus on worst case number of instructions taken by an algorithm

No. of Instructions executed during Sequential Search on n numbers

- For sequential search, you can write a for loop for the sequential search which iterates n times in the worst case.
- In each iteration, we perform constant number of instructions

No. of instructions in the worst case :

$$
\text { cn for some constant } c
$$

No. of Instructions executed during Binary Search

Given that array A is sorted.

```
public static boolean Bin_search(int[] A, int x)
{ int left =0;
    int right=A.length-1;
    boolean Is_found = false; int mid;
    while(Is_found==false && left>right)
    {
        mid = (left+right);
        if(A[mid]==x) Is_found=true;
        else if(A[mid]>x) right = mid-1;
        else left = mid+1;
    }
    return Is_found;
}
```


Analysis of Binary Search

- There are four instructions before entering the while loop.
- Number of instructions in each iteration of while loop is at most 5 .
- After each iterations of the while loop, the search domain (A[left]..A[right]) reduces by at least a factor of 2
- Total number of iterations of loop : $\log _{2} n$.

Hence the number of instructions in the worst case $=$ $4+5 \log _{2} n=a \log _{2} n+b$, for some constants a, b.

Hence Binary Search is exponentially faster than sequential searc

Why is GCD_fast faster than GCD_slow ?

```
//Assume m>=n
int GCD_fast(m,n)
{ while(n!=0)
    { rem = m%n;
        m = n;
        n = rem;
    }
    return m;
}
int GCD_slow(m,n)
{ while(n!=0)
    { diff = m-n;
        if(diff>=n) m = diff
        else {m=n; n = diff;}
    }
return m;
}
```


Analysis of GCD_fast

We shall bound the number of iterations of the while loop.

```
//Assume m>=n
int GCD_fast(m,n)
{ while(n!=0)
    { rem = m%n;
        m = n;
        n = rem;
    }
    return m;
}
```

Observation: After an iteration $(m, n) \longrightarrow(n, m \% n)$.

Analysis of GCD_fast

Observation: After an iteration $(m, n) \longrightarrow(n, m \% n)$.
Consider any iteration.

- Case 1: $m>\frac{3}{2} n$
- Case 2 : $m \leq \frac{3}{2} n$

Analysis of GCD_fast

Observation: After an iteration $(m, n) \longrightarrow(n, m \% n)$.
Consider any iteration.

- Case 1: $m>\frac{3}{2} n$

Inference : after the iteration
the new value of $m<\frac{2}{3}$ times old value of m

- Case 2 : $m \leq \frac{3}{2} n$

Analysis of GCD_fast

Observation: After an iteration $(m, n) \longrightarrow(n, m \% n)$.
Consider any iteration.

- Case 1 : $m>\frac{3}{2} n$

Inference : after the iteration
the new value of $m<\frac{2}{3}$ times old value of m

- Case 2 : $m \leq \frac{3}{2} n$

Inference : after the iteration
The new value of $n \leq \frac{1}{2}$ times old value of n

Analysis of GCD_fast

- It can be seen that once m or n becomes less than or equal to 2 , at most one more iteration will be executed.
- Hence, based on previous slide the number of iterations of while loop is at most $\log _{3 / 2} m+\log _{2} n$.

Analysis of GCD_slow

```
//Assume m>=n
int GCD_slow(m,n)
{ while(n!=0)
    { diff = m-n;
        if(diff>=n) m = diff
        else {m=n; n = diff;}
    }
return m;
}
```

The worst case : m is much larger than n.
For example $m=10000000002, n=2$.
It follows from the code that the algorithm will perform m / n iterations which is close to m when n is a small number.

Comparing GCD_fast and GCD_slow

In the worst case,

GCD_fast is exponentially faster than GCD_slow.

Comparing Selection Sort and Merge Sort

No. of instructions executed in Selection Sort on n numbers

Number of instructions taken in Selection Sort

```
int index_of_smallest_value(int[] A,int i)
//returns integer j such that A[j] is smallest among A[i], A[i+1]
SelectionSort(int [] A)
{
for(int count=0;count<A.length;count=count+1)
    {
        int j = index_of_smallest_value(A, count);
        if(j != count)
            swap_values_at(A,j,count);
    }
}
It follows easily that index_of_smallest_value takes \(\mathbf{c}(\mathbf{n}-\mathbf{i})\) instructions in the worst case for some constant \(\mathbf{c}\).
```


Number of instructions taken in Selection Sort on n numbers

- There are ???? iterations of the for loop
- Number of instructions taken to find i th smallest element = ????

Number of instructions taken in Selection Sort on n numbers

- There are $n-1$ iterations of the for loop
- Number of instructions taken to find i th smallest element = ????

Number of instructions taken in Selection Sort on n numbers

- There are $n-1$ iterations of the for loop
- Number of instructions taken to find i th smallest element $=c(n-i)$ for some constant c.

Number of instructions taken in Selection Sort on n numbers

$$
\sum_{0 \leq i<n-1} c(n-i)=c \frac{n(n-1)}{2}
$$

Let us analyse Merge Sort on n numbers

It uses a method to merge two sorted arrays

number of instructions for merging two sorted arrays of size n

Recall that the algorithm proceeds like :
start scanning A and B from left, compare two elements of A and B, copy the smaller one into C and continue ...

Merging two sorted arrays

Number of instructions: $c n$ for some constant c

Number of instructions taken in Merge Sort

```
public static void mergesort(int[] A, int left, int right)
    { if(left!=right)
        { int mid = (left+right)/2;
        mergesort(A, left, mid);
            mergesort(A, mid+1, right);
            merge(A,left,mid,right);
        }
    }
```

Each call of mergesort does two tasks

- Invoking two calls recursively
- Merging of two sorted portions of array A

Number of instructions taken in Merge Sort

A

99	7	5	1	67	11	4	2

Number of instructions taken in Merge Sort

- We perform cn instructions at each level of the recursion tree.
- There are $\log _{2} n$ levels in the tree.

Hence in the worst case there are $c n \log _{2} n$ instructions executed in Merge Sort on an array of size n.

Alternate analysis of Merge Sort

Let $T(n)$ be the number of instructions executed by merge sort on n numbers. The following recurrence captures the running time of merge sort exactly.

$$
T(n)= \begin{cases}a & \text { if } n=1 \\ c n+2 T(n / 2) & \text { otherwise }\end{cases}
$$

Here $c n$ is the no. of instructions for merging two halves of the array.

Alternate analysis of Merge Sort

Gradually unfold the recurrence.

$$
\begin{aligned}
T(n) & =c n+2\left(c n / 2+2 T\left(n / 2^{2}\right)\right) \\
& =c n+c n+2^{2} T\left(n / 2^{2}\right) \\
& =c n+c n+c n+\ldots+2^{i} T\left(n / 2^{i}\right) \\
& =c n+c n+c n+\ldots \log _{2} n \text { terms } \ldots \\
& =c n \log _{2} n
\end{aligned}
$$

Efficiency of Quick Sort to be analysed in next lecture class

Please come to Wednesday lecture with any question/doubt

