
ESc101 : Fundamental of Computing

I Semester 2008-09

Lecture 36

• Announcement : Extra sessions for lab test

• Sorting algorithms based on recursion

– Quick Sort (did in lst class)

– Merge Sort

• Introduction to Time Complexity

1

Extra session for lab

On Sunday- 9th November

B1 and B2 : Nikhi Jain CS101 2-3:30 PM

B3 and B4 : Kshitiz Garg CS102 2-3:30 PM.

B5 and B6 : Abhinav/Nitin CS101 3:45-5:15PM

B7 and B8 : Vikas Mards CS102 3:45-5:15PM

B9 and B10: Paras Tikamani CS101 5:15-6:45PM

2

Optional extra class

Saturday- 8th November at 5:15 PM in CS101

3

“Tower of Hanoi” problem

Hints: You can see that for 1 or 2 discs, there is a straight forward solution.

Now for the problem with n + 1 discs, assume you have a black box method

which can transfer n discs from one tower to another. How can you solve the

given problem (that is, n + 1 discs) using that method.

Now try to fill in the details of the recursive method. The final solution (recursive

method) is very small....

4

Quick Sort

5

Quick Sort : sorting a set S of numbers

• Select an element x.

• Partition the set S of numbers into two parts:

– S<x : the subset consisting of numbers less than x.

– S>x : the subset consisting of numbers greater than x.

• Recursively sort the two sets separately S<x and S>x, and concatenate

them.

6

Quick Sort : when set is represented as array

public static void Qsort(int[] A, int left, int right)

{

if(left<right)

{

int mid = partition(A, left, right);

Qsort(A,left,mid-1);

Qsort(A,mid+1,right);

}

}

You can observe that the size of problem corresponding to recursive calls

decreases always. Hence the program will eventually terminate.

7

Merge Sort

8

Merging two sorted arrays

Problem : Given two sorted arrays A and B, produce another sorted array

C
⋃

A ∪ B.

Trivial Solution :

Copy the elements of A and B into C , then sort C

Missing Point : A and B are already sorted

9

Merging two sorted arrays

Problem : Given two sorted arrays A and B, produce another sorted array

C
⋃

A ∪ B.

Trivial Solution :

Copy the elements of A and B into C , then sort C

Missing Point : A and B are already sorted

10

Merging two sorted arrays

Problem : Given two sorted arrays A and B, produce another sorted array

C
⋃

A ∪ B.

Trivial Solution :

Copy the elements of A and B into C , then sort C

Missing Point : A and B are already sorted

11

Merging two sorted arrays : a better solution

start scanning A and B from left, compare two elements of A and B, copy the

smaller one into C and continue ...

Let us consider an example ...

12

Merging two sorted arrays : a better solution

start scanning A and B from left, compare two elements of A and B, copy the

smaller one into C and continue ...

Let us consider an example ...

13

Example : Merging two sorted arrays

49 89 1012895 . . .

34 40 53 66 92 . . .3B

A

C

14

Example : Merging two sorted arrays

49 89 1012895 . . .

34 40 53 66 92 . . .3B

A

C 3

15

Example : Merging two sorted arrays

49 89 1012895 . . .

34 40 53 66 92 . . .3B

A

C 3 5

16

Example : Merging two sorted arrays

49 89 1012895 . . .

34 40 53 66 92 . . .3B

A

C 3 5 9

17

Example : Merging two sorted arrays

49 89 1012895 . . .

34 40 53 66 92 . . .3B

A

C 3 5 9 28

18

Example : Merging two sorted arrays

49 89 1012895 . . .

34 40 53 66 92 . . .3B

A

C 3 5 9 28 34

19

Merge Sort

Key Idea : Merging two sorted arrays is easier than sorting their union.

20

Merge Sort on an array A

• Sort the first half of array A recursively

• Sort the second half of the array recursively

• merge the two halves.

21

Merge Sort on an array A

public static void mergesort(int[] A, int left, int right)

{

if(??)

{

?? ;

?? ;

?? ;

?? ;

}

}

Convince yourself that each recursive call makes some progress, that is,approaches the base case.

This is very important rule that each recursive method must obey.

22

Merge Sort on an array A

public static void mergesort(int[] A, int left, int right)

{

if(left<right)

{

?? ;

?? ;

?? ;

?? ;

}

}

Convince yourself that each recursive call makes some progress, that is,approaches the base case.

This is very important rule that each recursive method must obey.

23

Merge Sort on an array A

public static void mergesort(int[] A, int left, int right)

{

if(left!=right)

{

int mid = (left+right)/2;

?? ;

?? ;

?? ;

}

}

Convince yourself that each recursive call makes some progress, that is,approaches the base case.

This is very important rule that each recursive method must obey.

24

Merge Sort on an array A

public static void mergesort(int[] A, int left, int right)

{

if(left!=right)

{

int mid = (left+right)/2;

mergesort(A, left, mid);

?? ;

?? ;

}

}

Convince yourself that each recursive call makes some progress, that is,approaches the base case.

This is very important rule that each recursive method must obey.

25

Merge Sort on an array A

public static void mergesort(int[] A, int left, int right)

{

if(left!=right)

{

int mid = (left+right)/2;

mergesort(A, left, mid);

mergesort(A, mid+1, right);

?? ;

}

}

Convince yourself that each recursive call makes some progress, that is,approaches the base case.

This is very important rule that each recursive method must obey.

26

Merge Sort on an array A

public static void mergesort(int[] A, int left, int right)

{

if(left!=right)

{

int mid = (left+right)/2;

mergesort(A, left, mid);

mergesort(A, mid+1, right);

merge(A,left,mid,right);

}

}

Convince yourself that each recursive call makes some progress, that is,approaches the base case.

This is very important rule that each recursive method must obey.

27

Merge Sort on an array A

public static void mergesort(int[] A, int left, int right)

{

if(left!=right)

{

int mid = (left+right)/2;

mergesort(A, left, mid);

mergesort(A, mid+1, right);

merge(A,left,mid,right);

}

}

Convince yourself that each recursive call makes progress, that is, it approaches the base case. This

is very important rule that each recursive method must obey.

28

Recursion Tree

When a method makes two or more recursive calls to itself, it is better to view the

execution as a tree.

29

Recursion Tree for Fibonacci number

public static int fib(int n)

{

if(n==0) return 0;

else

{ if(n==1) return 1;

else return fib(n-1)+fib(n-2);

}

}

Example : n=4

30

Recursion Tree for Fibonacci number for n = 4

fib(4)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)
1

0

1
1

2 1

01

31

Recursion Tree for Merge sort

public static void mergesort(int[] A, int left, int right)

{

if(left!=right)

{

int mid = (left+right)/2;

mergesort(A, left, mid);

mergesort(A, mid+1, right);

merge(A,left,mid,right);

}

}

Example : A ={99, 7, 5, 1, 67, 11, 4, 2 }

32

Recursion Tree for Merge sort

for A ={99, 7, 5, 1, 67, 11, 4, 2 }

Note : In the next few slides, for sake of compactness

we shall use MSort() to denote mergesort().

We show the status of A as we move up the recursion tree level by level.

33

Base case : Level 0 (no processing required)

MSort(A,0,7)

MSort(A,4,7)
MSort(A,0,3)

MSort(A,0,1) MSort(A,4,5)MSort(A,2,3) MSort(A,6,7)

MSort(A,0,0) MSort(A,1,1) MSort(A,2,2) MSort(A,3,3) MSort(A,4,4) MSort(A,5,5) MSort(A,6,6) MSort(A,7,7)

A

Level 0

Level 1

Level 2

Level 3

99 17 5 241167

34

Passing results to Level 1

MSort(A,0,7)

MSort(A,4,7)
MSort(A,0,3)

MSort(A,0,1) MSort(A,4,5)MSort(A,2,3) MSort(A,6,7)

MSort(A,0,0) MSort(A,1,1) MSort(A,2,2) MSort(A,3,3) MSort(A,4,4) MSort(A,5,5) MSort(A,6,6) MSort(A,7,7)

A

Level 0

Level 1

Level 2

Level 3

99 17 5 241167

35

Merging at Level 1

MSort(A,0,7)

MSort(A,4,7)
MSort(A,0,3)

MSort(A,0,1) MSort(A,4,5)MSort(A,2,3) MSort(A,6,7)

MSort(A,0,0) MSort(A,1,1) MSort(A,2,2) MSort(A,3,3) MSort(A,4,4) MSort(A,5,5) MSort(A,6,6) MSort(A,7,7)

2A

Level 0

Level 1

Level 2

Level 3

1 5997 411 67

36

Passing results to Level 2

MSort(A,0,7)

MSort(A,4,7)
MSort(A,0,3)

MSort(A,0,1) MSort(A,4,5)MSort(A,2,3) MSort(A,6,7)

MSort(A,0,0) MSort(A,1,1) MSort(A,2,2) MSort(A,3,3) MSort(A,4,4) MSort(A,5,5) MSort(A,6,6) MSort(A,7,7)

2A

Level 0

Level 1

Level 2

Level 3

1 5997 6711 4

37

Merging at Level 2

MSort(A,0,7)

MSort(A,4,7)
MSort(A,0,3)

MSort(A,0,1) MSort(A,4,5)MSort(A,2,3) MSort(A,6,7)

MSort(A,0,0) MSort(A,1,1) MSort(A,2,2) MSort(A,3,3) MSort(A,4,4) MSort(A,5,5) MSort(A,6,6) MSort(A,7,7)

A 1 2

Level 0

Level 3

Level 2

Level 1

5 7 99 67114

38

Passing result to Level 3

MSort(A,0,7)

MSort(A,4,7)
MSort(A,0,3)

MSort(A,0,1) MSort(A,4,5)MSort(A,2,3) MSort(A,6,7)

MSort(A,0,0) MSort(A,1,1) MSort(A,2,2) MSort(A,3,3) MSort(A,4,4) MSort(A,5,5) MSort(A,6,6) MSort(A,7,7)

A 1 2

Level 0

Level 1

Level 2

Level 3

5 7 99 67114

39

Merging at Level 3

MSort(A,0,7)

MSort(A,4,7)
MSort(A,0,3)

MSort(A,0,1) MSort(A,4,5)MSort(A,2,3) MSort(A,6,7)

MSort(A,0,0) MSort(A,1,1) MSort(A,2,2) MSort(A,3,3) MSort(A,4,4) MSort(A,5,5) MSort(A,6,6) MSort(A,7,7)

A 1 992 4 5 7 11 67

Level 3

Level 2

Level 1

Level 0

40

Recursion Tree for Quick sort

Do it as homework

41

Comparing Three sorting algorithms

for(n=1000,n<20000;n=n+1000)

{ Generate an array A of size n;

Fill it with random integers;

Create copies B and C of array A;

Execute Quick sort on A and measure time.

Execute Merge sort on A and measure time.

Execute SelectionSort on B and measure time.

}

42

Measuring time taken a method M

long start = System.currentTimeMillis();

M();

long stop = System.currentTimeMillis();

System.out.println(stop-start);

Note : System.currentTimeMillis() returns a long which

corresponds to current time in milliseconds.

43

Comparing Three sorting algorithms

Experimental Observations

• Quick sort is more efficient than merge sort

• Merge sort is more efficient than Selection Sort

Please study the program : Three sorting algos.java

44

What is the reason for different running times ?

Given that

• all of them has same input and output

• all of them are executed on the same machine

We need to analyze the number of steps/instruction

taken by each sorting algorithm

45

How many steps/instructions are executed by the following l oop ?

for(int i=1; i<=n; i=i+1)

{

sum = sum + i;

}

Steps = 1+3n+1

46

How many steps/instructions are executed by the following l oop ?

for(int i=1; i<=n; i=i+1)

{

sum = sum + i;

}

Steps = 1 + 3n + 1

47

How many steps/instructions are executed by the following l oop ?

for(int n=1;n<=m;n=n+1)

{

for(int i=1; i<=n; i=i+1)

{

sum = sum + i;

}

}

Steps =1 + m +
∑

n=m

n=1
(1 + 3n + 1) + m + 1

48

How many steps/instructions are executed by the following l oop ?

for(int n=1;n<=m;n=n+1)

{

for(int i=1; i<=n; i=i+1)

{

sum = sum + i;

}

}

Steps = 1 + m +
∑

n=m

n=1
(1 + 3n + 1) + m + 1

49

