
ESc101 : Fundamental of Computing

I Semester 2008-09

Lecture 36

• Announcement : Extra sessions for lab test

• Sorting algorithms based on recursion

– Quick Sort (did in lst class)

– Merge Sort

• Introduction to Time Complexity
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Extra session for lab

On Sunday- 9th November

B1 and B2 : Nikhi Jain CS101 2-3:30 PM

B3 and B4 : Kshitiz Garg CS102 2-3:30 PM.

B5 and B6 : Abhinav/Nitin CS101 3:45-5:15PM

B7 and B8 : Vikas Mards CS102 3:45-5:15PM

B9 and B10: Paras Tikamani CS101 5:15-6:45PM
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Optional extra class

Saturday- 8th November at 5:15 PM in CS101
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“Tower of Hanoi” problem

Hints: You can see that for 1 or 2 discs, there is a straight forward solution.

Now for the problem with n + 1 discs, assume you have a black box method

which can transfer n discs from one tower to another. How can you solve the

given problem (that is, n + 1 discs) using that method.

Now try to fill in the details of the recursive method. The final solution (recursive

method) is very small....
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Quick Sort
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Quick Sort : sorting a set S of numbers

• Select an element x.

• Partition the set S of numbers into two parts:

– S<x : the subset consisting of numbers less than x.

– S>x : the subset consisting of numbers greater than x.

• Recursively sort the two sets separately S<x and S>x, and concatenate

them.
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Quick Sort : when set is represented as array

public static void Qsort(int[] A, int left, int right)

{

if(left<right)

{

int mid = partition(A, left, right);

Qsort(A,left,mid-1);

Qsort(A,mid+1,right);

}

}

You can observe that the size of problem corresponding to recursive calls

decreases always. Hence the program will eventually terminate.
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Merge Sort
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Merging two sorted arrays

Problem : Given two sorted arrays A and B, produce another sorted array

C
⋃

A ∪ B.

Trivial Solution :

Copy the elements of A and B into C , then sort C

Missing Point : A and B are already sorted
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Merging two sorted arrays

Problem : Given two sorted arrays A and B, produce another sorted array

C
⋃

A ∪ B.

Trivial Solution :

Copy the elements of A and B into C , then sort C

Missing Point : A and B are already sorted
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Merging two sorted arrays

Problem : Given two sorted arrays A and B, produce another sorted array

C
⋃

A ∪ B.

Trivial Solution :

Copy the elements of A and B into C , then sort C

Missing Point : A and B are already sorted
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Merging two sorted arrays : a better solution

start scanning A and B from left, compare two elements of A and B, copy the

smaller one into C and continue ...

Let us consider an example ...
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Merging two sorted arrays : a better solution

start scanning A and B from left, compare two elements of A and B, copy the

smaller one into C and continue ...

Let us consider an example ...
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Example : Merging two sorted arrays

49 89 1012895 . . .

34 40 53 66 92 . . .3B

A

C
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Example : Merging two sorted arrays

49 89 1012895 . . .

34 40 53 66 92 . . .3B

A

C 3
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Example : Merging two sorted arrays

49 89 1012895 . . .

34 40 53 66 92 . . .3B

A

C 3 5
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Example : Merging two sorted arrays

49 89 1012895 . . .

34 40 53 66 92 . . .3B

A

C 3 5 9
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Example : Merging two sorted arrays

49 89 1012895 . . .

34 40 53 66 92 . . .3B

A

C 3 5 9 28
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Example : Merging two sorted arrays

49 89 1012895 . . .

34 40 53 66 92 . . .3B

A

C 3 5 9 28 34
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Merge Sort

Key Idea : Merging two sorted arrays is easier than sorting their union.
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Merge Sort on an array A

• Sort the first half of array A recursively

• Sort the second half of the array recursively

• merge the two halves.
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Merge Sort on an array A

public static void mergesort(int[] A, int left, int right)

{

if( ?? )

{

?? ;

?? ;

?? ;

?? ;

}

}

Convince yourself that each recursive call makes some progress, that is,approaches the base case.

This is very important rule that each recursive method must obey.
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Merge Sort on an array A

public static void mergesort(int[] A, int left, int right)

{

if(left<right)

{

?? ;

?? ;

?? ;

?? ;

}

}

Convince yourself that each recursive call makes some progress, that is,approaches the base case.

This is very important rule that each recursive method must obey.
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Merge Sort on an array A

public static void mergesort(int[] A, int left, int right)

{

if(left!=right)

{

int mid = (left+right)/2;

?? ;

?? ;

?? ;

}

}

Convince yourself that each recursive call makes some progress, that is,approaches the base case.

This is very important rule that each recursive method must obey.
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Merge Sort on an array A

public static void mergesort(int[] A, int left, int right)

{

if(left!=right)

{

int mid = (left+right)/2;

mergesort(A, left, mid);

?? ;

?? ;

}

}

Convince yourself that each recursive call makes some progress, that is,approaches the base case.

This is very important rule that each recursive method must obey.
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Merge Sort on an array A

public static void mergesort(int[] A, int left, int right)

{

if(left!=right)

{

int mid = (left+right)/2;

mergesort(A, left, mid);

mergesort(A, mid+1, right);

?? ;

}

}

Convince yourself that each recursive call makes some progress, that is,approaches the base case.

This is very important rule that each recursive method must obey.
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Merge Sort on an array A

public static void mergesort(int[] A, int left, int right)

{

if(left!=right)

{

int mid = (left+right)/2;

mergesort(A, left, mid);

mergesort(A, mid+1, right);

merge(A,left,mid,right);

}

}

Convince yourself that each recursive call makes some progress, that is,approaches the base case.

This is very important rule that each recursive method must obey.
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Merge Sort on an array A

public static void mergesort(int[] A, int left, int right)

{

if(left!=right)

{

int mid = (left+right)/2;

mergesort(A, left, mid);

mergesort(A, mid+1, right);

merge(A,left,mid,right);

}

}

Convince yourself that each recursive call makes progress, that is, it approaches the base case. This

is very important rule that each recursive method must obey.
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Recursion Tree

When a method makes two or more recursive calls to itself, it is better to view the

execution as a tree.
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Recursion Tree for Fibonacci number

public static int fib(int n)

{

if(n==0) return 0;

else

{ if(n==1) return 1;

else return fib(n-1)+fib(n-2);

}

}

Example : n=4
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Recursion Tree for Fibonacci number for n = 4

fib(4)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)
1

0

1
1

2 1

01

31



Recursion Tree for Merge sort

public static void mergesort(int[] A, int left, int right)

{

if(left!=right)

{

int mid = (left+right)/2;

mergesort(A, left, mid);

mergesort(A, mid+1, right);

merge(A,left,mid,right);

}

}

Example : A ={99, 7, 5, 1, 67, 11, 4, 2 }
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Recursion Tree for Merge sort

for A ={99, 7, 5, 1, 67, 11, 4, 2 }

Note : In the next few slides, for sake of compactness

we shall use MSort() to denote mergesort().

We show the status of A as we move up the recursion tree level by level.
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Base case : Level 0 (no processing required)

MSort(A,0,7)

MSort(A,4,7)
MSort(A,0,3)

MSort(A,0,1) MSort(A,4,5)MSort(A,2,3) MSort(A,6,7)

MSort(A,0,0) MSort(A,1,1) MSort(A,2,2) MSort(A,3,3) MSort(A,4,4) MSort(A,5,5) MSort(A,6,6) MSort(A,7,7)

A

Level 0

Level 1

Level 2

Level 3

99 17 5 241167
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Passing results to Level 1

MSort(A,0,7)

MSort(A,4,7)
MSort(A,0,3)

MSort(A,0,1) MSort(A,4,5)MSort(A,2,3) MSort(A,6,7)

MSort(A,0,0) MSort(A,1,1) MSort(A,2,2) MSort(A,3,3) MSort(A,4,4) MSort(A,5,5) MSort(A,6,6) MSort(A,7,7)

A

Level 0

Level 1

Level 2

Level 3

99 17 5 241167
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Merging at Level 1

MSort(A,0,7)

MSort(A,4,7)
MSort(A,0,3)

MSort(A,0,1) MSort(A,4,5)MSort(A,2,3) MSort(A,6,7)

MSort(A,0,0) MSort(A,1,1) MSort(A,2,2) MSort(A,3,3) MSort(A,4,4) MSort(A,5,5) MSort(A,6,6) MSort(A,7,7)

2A

Level 0

Level 1

Level 2

Level 3

1 5997 411 67
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Passing results to Level 2

MSort(A,0,7)

MSort(A,4,7)
MSort(A,0,3)

MSort(A,0,1) MSort(A,4,5)MSort(A,2,3) MSort(A,6,7)

MSort(A,0,0) MSort(A,1,1) MSort(A,2,2) MSort(A,3,3) MSort(A,4,4) MSort(A,5,5) MSort(A,6,6) MSort(A,7,7)

2A

Level 0

Level 1

Level 2

Level 3

1 5997 6711 4
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Merging at Level 2

MSort(A,0,7)

MSort(A,4,7)
MSort(A,0,3)

MSort(A,0,1) MSort(A,4,5)MSort(A,2,3) MSort(A,6,7)

MSort(A,0,0) MSort(A,1,1) MSort(A,2,2) MSort(A,3,3) MSort(A,4,4) MSort(A,5,5) MSort(A,6,6) MSort(A,7,7)

A 1 2

Level 0

Level 3

Level 2

Level 1

5 7 99 67114
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Passing result to Level 3

MSort(A,0,7)

MSort(A,4,7)
MSort(A,0,3)

MSort(A,0,1) MSort(A,4,5)MSort(A,2,3) MSort(A,6,7)

MSort(A,0,0) MSort(A,1,1) MSort(A,2,2) MSort(A,3,3) MSort(A,4,4) MSort(A,5,5) MSort(A,6,6) MSort(A,7,7)

A 1 2

Level 0

Level 1

Level 2

Level 3

5 7 99 67114
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Merging at Level 3

MSort(A,0,7)

MSort(A,4,7)
MSort(A,0,3)

MSort(A,0,1) MSort(A,4,5)MSort(A,2,3) MSort(A,6,7)

MSort(A,0,0) MSort(A,1,1) MSort(A,2,2) MSort(A,3,3) MSort(A,4,4) MSort(A,5,5) MSort(A,6,6) MSort(A,7,7)

A 1 992 4 5 7 11 67

Level 3

Level 2

Level 1

Level 0

40



Recursion Tree for Quick sort

Do it as homework
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Comparing Three sorting algorithms

for(n=1000,n<20000;n=n+1000)

{ Generate an array A of size n;

Fill it with random integers;

Create copies B and C of array A;

Execute Quick sort on A and measure time.

Execute Merge sort on A and measure time.

Execute SelectionSort on B and measure time.

}
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Measuring time taken a method M

long start = System.currentTimeMillis();

M();

long stop = System.currentTimeMillis();

System.out.println(stop-start);

Note : System.currentTimeMillis() returns a long which

corresponds to current time in milliseconds.
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Comparing Three sorting algorithms

Experimental Observations

• Quick sort is more efficient than merge sort

• Merge sort is more efficient than Selection Sort

Please study the program : Three sorting algos.java
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What is the reason for different running times ?

Given that

• all of them has same input and output

• all of them are executed on the same machine

We need to analyze the number of steps/instruction

taken by each sorting algorithm
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How many steps/instructions are executed by the following l oop ?

for(int i=1; i<=n; i=i+1)

{

sum = sum + i;

}

Steps = 1+3n+1
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How many steps/instructions are executed by the following l oop ?

for(int i=1; i<=n; i=i+1)

{

sum = sum + i;

}

Steps = 1 + 3n + 1
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How many steps/instructions are executed by the following l oop ?

for(int n=1;n<=m;n=n+1)

{

for(int i=1; i<=n; i=i+1)

{

sum = sum + i;

}

}

Steps =1 + m +
∑

n=m

n=1
(1 + 3n + 1) + m + 1
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How many steps/instructions are executed by the following l oop ?

for(int n=1;n<=m;n=n+1)

{

for(int i=1; i<=n; i=i+1)

{

sum = sum + i;

}

}

Steps = 1 + m +
∑

n=m

n=1
(1 + 3n + 1) + m + 1
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