EScl101 : Fundamental of Computing

| Semester 2008-09

Lecture 36

® Announcement : Extra sessions for lab test

e Sorting algorithms based on recursion
— Quick Sort (did in Ist class)

— Merge Sort

e [ntroduction to Time Complexity

Extra session for lab

On Sunday- 9th November

Ni khi Jain

Kshitiz Garg

Abhi nav/ Nitin

Vi kas Mar ds

Par as Ti kanani

CS101 2-3: 30 PM

CS102 2-3: 30 PM

CS101 3:45-5: 15PM

CS102 3:45-5: 15PM

CS101 5: 15-6: 45PM

Optional extra class

Saturday- 8th November at 5:15 PM in CS101

“Tower of Hanol” problem

Hints: You can see that for 1 or 2 discs, there is a straight forward solution.

Now for the problem with n + 1 discs, assume you have a black box method
which can transfer n discs from one tower to another. How can you solve the

given problem (that is, n + 1 discs) using that method.

Now try to fill in the details of the recursive method. The final solution (recursive

method) is very small....

Quick Sort

Quick Sort : sorting a set .S of numbers

e Select an element .

e Partition the set .S’ of numbers into two parts:

— S, : the subset consisting of numbers less than .

— S, : the subset consisting of numbers greater than .

e Recursively sort the two sets separately S, and S ., and concatenate

them.

Quick Sort : when set is represented as array

public static void Qort(int[] A 1int left, int
{

| f(left<right)

{

Int md = partition(A, left, right);

sort (A left,md-1);
sort (A md+1,right);

}

You can observe that the size of problem corresponding to recursive calls

decreases always. Hence the program will eventually terminate.

| ght)

Merge Sort

Merging two sorted arrays

Problem : Given two sorted arrays A and B, produce another sorted array

ClJAUB.

Merging two sorted arrays

Problem : Given two sorted arrays A and B, produce another sorted array

ClJAUB.

Trivial Solution :
Copy the elements of A and B into C, then sort C

10

Merging two sorted arrays

Problem : Given two sorted arrays A and B, produce another sorted array

ClJAUB.

Trivial Solution :
Copy the elements of A and B into C, then sort C
Missing Point : A and B are already sorted

11

Merging two sorted arrays : a better solution

start scanning A and B from left, compare two elements of A and B, copy the

smaller one into C' and continue ...

12

Merging two sorted arrays : a better solution

start scanning A and B from left, compare two elements of A and B, copy the

smaller one into C' and continue ...

Let us consider an example ...

13

Example : Merging two sorted arrays

14

Example : Merging two sorted arrays

l

15

Example : Merging two sorted arrays

:

16

Example : Merging two sorted arrays

l

28

17

Example : Merging two sorted arrays

:

49

18

Example : Merging two sorted arrays

:

49

19

Merge Sort

Key Idea : Merging two sorted arrays is easier than sorting their union.

20

Merge Sort on an array A

e Sort the first half of array A recursively
e Sort the second half of the array recursively

e merge the two halves.

21

Merge Sort on an array A

public static void nergesort(int[] A int left, int right)
{

i f (272

{

22

Merge Sort on an array A

public static void nergesort(int[] A int left, int right)
{

i f(left<right)

{
?7?
?7?
?7?
?7?

23

Merge Sort on an array A

public static void nergesort(int[] A int left, int right)

{
i f(left!=right)

{

int mid= (left+right)/2:

?7?
?7?
?7?

24

Merge Sort on an array A

public static void nergesort(int[] A int left, int right)

{
i f(left!=right)

{

int md = (left+right)/2;
mergesort (A, left, md);

?7?
?7?

25

Merge Sort on an array A

public static void nergesort(int[] A

{
i f(left!=right)
{
int md = (left+right)/2;
mergesort (A, left, md);

I nt

mergesort (A, md+1, right);

?7?

26

| ef t,

I nt

ri ght)

Merge Sort on an array A

public static void nergesort(int[] A

{

if(left!=right)

{

int md = (left+right)/2;
mergesort (A, left, md);

I nt

mergesort (A, md+1, right);

merge(A left,md,right);

27

| ef t,

I nt

ri ght)

Merge Sort on an array A

public static void nergesort(int[] A int left, int right)

{
i f(left!=right)
{
int md = (left+right)/2;
mergesort (A, left, md);
mergesort (A, md+1, right);
merge(A left,md, right);

Convince yourself that each recursive call makes progress, that is, it approaches the base case. This

Is very important rule that each recursive method must obey.

28

Recursion Tree

When a method makes two or more recursive calls to itself, it is better to view the

execution as a tree.

29

Recursion Tree for Fibonacci number

public static int fib(int n)

{
| f(n==0) return O;

el se

{ | f(n==1) return 1;
else return fib(n-1)+fib(n-2);

}

Example : n=4

30

Recursion Tree for Fibonacci number forn =4

SN

fib®) | | fib(0)

31

Recursion Tree for Merge sort

public static void nergesort(int[] A int left, int fight)
{

I f(left!=right)

{
int md = (left+right)/2;
nergesort (A left, md);
mergesort (A, md+1l, right);
merge(A left, md, right);

}

Example : A ={99,7,5,1,67,11,4,2 }

32

Recursion Tree for Merge sort

for A ={99,7,5,1,67,11,4,2 }

Note : In the next few slides, for sake of compactness

we shall use MSort() to denote mergesort().

We show the status of A as we move up the recursion tree level by level.

33

Base case : Level 0 (no processing required)

MSort(A,0,7)

MSort(A,0,3) MSort(A 4,7)

MSort(A,0,1) 2, MSort(A,4,5) MSort(A,6,7)

J I JCJC) JC JC

MSort(A,00) MSOM(AL1) MSort(A22) MSort(A33) MSort(A44) MSort(A55) MSor(A66) MSort(A,7,7)

99 7 5 6/ 11 4 2

34

Passing results to Level 1

MSort(A,0,7)

MSort(A,0,3)

MSort(A,0,1) 2, MSort(A,6,7)

MSOH(A,O,O) MSort(A 1 1) MSort(A 2,2) MSort(A,3,3) MSort(A 4 4) MSort(A 5 5) MSort(A 6 6) MSort(A 7.7)

99 7 5 1 67 11 4 2

35

Merging at Level 1

MSort(A,0,7)

MSort(A,0,3)

MSort(A,0,1) 2, MSort(A,4,5) MSort(A,6,7)

Leve 1

| NN | L | LevdC

MSori(A,00) MSOM(ALL) MSort(A22) MSort(A,33) MSort(A44) MSort(A55) MSO(A66) MSort(A,7,7)

7 99 5 11 67 2 4

36

Passing results to Level 2

MSort(A,0,7)

MSort(A,0,3)

-

MSort(A,0,1) 2, MSort(A,6,7)

Level 1

Level C
| e Je

MSori(A,00) MSOM(ALL) MSort(A22) MSort(A,33) MSort(A44) MSort(A55) MSO(A66) MSort(A,7,7)

7 99 1 5 11 67 2 4

37

Merging at Level 2

MSort(A,0,7)

MSort(A,0,3)

MSort(A,0,1) 2, MSort(A,4,5) MSort(A,6,7)

| NN |] teC

MSori(A,00) MSOM(ALL) MSort(A22) MSort(A,33) MSort(A44) MSort(A55) MSO(A66) MSort(A,7,7)

1 5 7 99 2 4 11 67

38

Passing result to Level 3

MSort(A,0,7)

MSort(A,0,1) 2, MSort(A,6,7)

MSori(A,00) MSOM(ALL) MSort(A22) MSort(A,33) MSort(A44) MSort(A55) MSO(A66) MSort(A,7,7)

1 5 7 99 2 4 11 6/

39

Merging at Level 3

MSort(A,0,7)

MSort(A,0,3) MSort(A 4,7)

MSort(A,0,1) 2, MSort(A,4,5) MSort(A,6,7)

M Sort(A,0,0) MSort(A,1,1) MSort(A,2,2) MSort(A,3,3) MSort(A,4,4) MSort(A,55) MSort(A,6,6) MSort(A,7,7)

. 2 4 5 7 11 67 99

40

Recursion Tree for Quick sort

Do it as homework

41

Comparing Three sorting algorithms

f or (n=1000, n<20000; n=n+1000)
{ Generate an array A of size n;

Fill 1t wth random i ntegers;

Create copies B and C of array A

Execute Quick sort on A and nmeasure tine.
Execute Merge sort on A and neasure tine.
Execute Sel ectionSort on B and neasure tine.

42

Measuring time taken a method M

|l ong start = SystemcurrentTimneM I 11is();

M) ;

| ong stop = SystemcurrentTimneMI1is();
Systemout.println(stop-start);

Note: System current TimeM | | i s() returns along which

corresponds to current time in milliseconds.

43

Comparing Three sorting algorithms

Experimental Observations

e Quick sort is more efficient than merge sort

e Merge sort is more efficient than Selection Sort

Please study the program : Three _sorting _algos.java

44

What is the reason for different running times ?

Given that
e all of them has same input and output

e all of them are executed on the same machine

We need to analyze the number of steps/instruction

taken by each sorting algorithm

45

How many steps/instructions are executed by the following | oop ?

for(int 1=1; i<=n; I=I+1)

{

sum = sum + |

46

How many steps/instructions are executed by the following | oop ?

for(int 1=1; i<=n; I=I+1)

{

sum = sum + |

Steps=1+3n+1

a7

How many steps/instructions are executed by the following | oop ?

for(int n=1; n<=m n=n+1)

{

for(int 1=1; i<=n; 1=i+1)
{

sum = sum + 1

48

How many steps/instructions are executed by the following | oop ?

for(int n=1; n<=m n=n+1)

{
for(int 1=1; i<=n; 1=i+1)
{

sum = sum + 1

Steps=1+m+> . _"(1+3n+1)+m+1

49

