
ESc101 : Fundamental of Computing

I Semester 2008-09

Lecture 33

• Clarifying doubts from previous lecture

• Proving correctness of a recursive method

• More examples of recursion

• Input/Output (if time permits)

Note I have tried to simplify these slides after the lecture. I hope you will go

through these slides and attempt the exercises given in file recur exercise.pdf.

Extra class is on Sunday 10:00 AM in CS101.
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Understanding recursion requires only two basic tools

• The control flow when a method calls another method (may be itself) :

Lecture 30

• Mathematical Induction
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How did you prove ?

• For all natural number n,

∑

0≤i≤n

i3 =
n2(n + 1)2

4

• ...

• more complicated assertions which you might have proved before coming to

IIT.

• ...

Principle of Mathematical Induction
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Principle of Mathematical Induction

Let P(n) be a statement defined as function of integer n.

If the following assertions hold

1. P(n) is true for some n = n0.

2. If P(i) is true for any i ≥ n0, then P(i + 1) is also true.

We can conclude that P(n) is true for all n > n0.

Observe the similarity between induction and recursive formulation of a problem
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Principle of Mathematical Induction
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Problem solved in last class

Enumerate the elements of the following sets.

1. Pattern (n, m): the set of all strings formed by n |’s and m *’s

2. Comb (A, L): all combinations of length L formed from set A

3. Permute (A, L): all permutations of length L formed using characters from set

A)

Partially solved in last class
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Steps used in solving the problems

• understand the domain of the problem and the set to be enumerated

• To express the set recursively/inductively ?
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Doubt 1 : Why do we have to extend

• Pattern (n, m) to PatternS (n, m, S) ?

• Comb (A, L) to CombS (A, L, S) ?

• Permutation (A, L) to PermutationS (A, L, S) ?

• Partition (n) to PartitionS (n, S) ?
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Can we express Pattern( n,m) recursively ?

• Pattern (0,0) = {“”}

• for n > 0, m > 0, Pattern (n, m) : ??

set of strings of the form : ’|’ followed by Pattern (n − 1, m).

set of strings of the form : ’*’ followed by Pattern (n, m − 1).

Not exact recursive formulation !!
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Can we express Pattern( n,m) recursively ?

• Pattern (0,0) = {“”}

• for n > 0, m > 0, Pattern (n, m) is union of two sets :

set of strings of the form : ’|’ followed by a string of n − 1 ’|’s, and m *’s.

set of strings of the form : ’*’ followed by a string of n ’|’s, and m − 1 *’s.

Not exact recursive formulation !!
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So we generalize the definition of Pattern()

Let PatternS (n, m, S) be the set of all strings of the form S+P where P is the

string containing n |’s and m *’s.

It is easy to observe that

Pattern (n, m) = PatternS (n, m, ” ”);

PatternS (n, m, S) can be expressed recursively quite easily
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Recursive formulation of PatternS( n,m, S)

for n > 0, m > 0,

PatternS (n, m, S) = PatternS (n−1, m, S+′|′)
⋃

PatternS (n, m−1, S+′∗′)
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Conslusion :

we extend

• Pattern (n, m) to PatternS (n, m, S)

• Comb (A, L) to CombS (A, L, S)

• Permutation (A, L) to PermutationS (A, L, S)

• Partition (n) to PartitionS (n, S)

... ?? ...
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Therefore,

we extend

• Pattern (n, m) to PatternS (n, m, S)

• Comb (A, L) to CombS (A, L, S)

• Permutation (A, L) to PermutationS (A, L, S)

• Partition (n) to PartitionS (n, S)

.. to express the sets exactly in an inductive/recursive manne r
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Recursive method for computing PatternS( n,m, S)

public static long PatternS(int n, int m, String S)

{ if(n==0 && m==0)

System.out.println(S);

else

{

if(n!=0) PatternS(n-1,m,S+’|’);

if(m!=0) PatternS(n,m-1,S+’*’);

}

}

What is the guarantee that this is method is correct ?
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Proof of correctness is based on mathematical induction
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Proof that the method PatternS(n,m,S) is correct

What is the inductive assertion ?

P (n,m) : The method PatternS (n, m, S) for any string S prints all strings of the

form S+P where P is the string containing n |’s and m *’s.
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Proof that the method PatternS(n,m,S) is correct

The inductive assertion is :

P (k) :

The method PatternS(n, m, S) for all nonnegative integers n, m with n + m = k

and any string S will print all strings of the form S+P where P is the string

containing n |’s and m *’s.
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Proving that P(k) is true for all k ≥ 0

Base Case : It is easy to conclude that P(0) is true.

Induction step : We have to prove P(k) for k > 0 given that P(k − 1) holds.

The Proof uses the principle of mathematical induction and uses

• the description of the method PatternS(n, m, S)

• the recursive formulation of the set PatternS (n,m,S).

(We use bold letters to distinguish set from the method)

Note : The detailed proof has been provided in the file inductive proof.pdf

available on the website.

23



All combinations of length L formed by characters from set A
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Let us first generalize Comb to CombS

S ∩ A = ∅

Combs (A,L,S) : All strings formed by concatenating S with L characters selected

from A where order does not matter among characters .

It can be seen that

Comb (A, L) = CombS (A, L, ” ”)
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Recursive formulation of CombS(A,L,S) : when L 6=0 and |A| >L

Consider any x ∈ A.

CombS (A,L,S) consists of two disjoint groups.

• Those combinations in which x is present.

Comb (A\{x}, L − 1, S + x)

• Those combinations in which x is not present.

Comb (A\{x}, L, S)
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Complete recursive formulation of CombS(A,L,S)

Let x ∈ A.

CombS (A,L,S) =

=



















































S if L = 0

CombS (A\{x}, L − 1, S +′ x′) if L > 0 and |A| = L.

CombS (A\{x}, L − 1, S +′ x′)
⋃

CombS (A\{x}, L, S) if L > 0 and |A| > L.
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Complete recursive formulation of CombS(A,L,S) with A as ar ray

CombS (A, i, L, S) = All strings formed by concatenating S with L characters

selected from {A[i], A[i + 1], ...} where order does not matter among

characters .

Recall in the above definition, we assume that S does not have any character

from {A[i], A[i + 1], ...}.
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Complete recursive formulation of CombS(A,L,S) with A as ar ray

CombS (A, i, L, S) =

=


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


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
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


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


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
















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

S if L = 0

CombS (A, i + 1, L − 1, S + A[i]) if L > 0 and A.length − i = L.

CombS (A, i + 1, L − 1, S + A[i])
⋃

CombS (A, i + 1, L, S) if L > 0 and A.length − i > L.
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Recursive method for CombS(A,L,S)

public static void CombS(char[] A, int i, int L, String S)

{ int current_size_of_A= A.length-i;

if(L==0) System.out.println(S);

else

{

CombS(A,i+1,L-1,S+A[i]);

if(current_size_of_A>L)

CombS(A,i+1,L,S);

}

}

What is proof of correctness ?

for all Strings S, CombS(A, i, L, S) prints All strings formed by concatenating S

with L characters selected from {A[i], A[i + 1], ...} where order does not

matter among characters .
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Recursive method for CombS(A,L,S)

public static void CombS(char[] A, int i, int L, String S)

{ int current_size_of_A= A.length-i;

if(L==0) System.out.println(S);

else

{

CombS(A,i+1,L-1,S+A[i]);

if(current_size_of_A>L)

CombS(A,i+1,L,S);

}

}

What is inductive Assertion : P (k) ?

For all arrays A, integer i, L such that A.length − i + L = k, and any string S

CombS(A, i, L, S) prints All strings formed by concatenating S with L characters

selected from {A[i], A[i + 1], ...} where order does not matter among

characters .
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Recursive method for CombS(A,L,S)

public static void CombS(char[] A, int i, int L, String S)

{ int current_size_of_A= A.length-i;

if(L==0) System.out.println(S);

else

{

CombS(A,i+1,L-1,S+A[i]);

if(current_size_of_A>L)

CombS(A,i+1,L,S);

}

}

P (k) : (try to prove similar to the proof of PatternS(n,m,S))

For all arrays A, nonnegative integers i, L such that A.length − i + L = k,

and any string S, the method CombS(A, i, L, S) prints All strings formed by

concatenating S with L characters selected from {A[i], A[i + 1], ...} where

order does not matter among characters .
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Permutation of L characters chosen from set A

Domain : L is non-negative integer, A is a set of character with |A| ≥ L.

Permute (A, L) : the set of all strings of length L whose characters belong to A.

Aim : To design a program to compute Permute (A, L)
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Extension of Permute to PermuteS

PermuteS (A, L, S) : the set of all strings with S as prefix and followed by a

permutation of L characters from A.

It can be seen that

Permute (A, L) = PermuteS (A, L, “”)

35



Recursive formulation of PermuteS(A,L,S)

PermuteS(A, L, S) =















S if L = 0

⋃

x∈A
PermuteS (A\{x}, L − 1, S +′ x′) if L > 0
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Recursive formulation of PermuteS(A,L,S)

PermuteS(A, L, S) =















S if L = 0

⋃

x∈A
PermuteS (A\{x}, L − 1, S +′ x′) if L > 0
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Recursive formulation of PermuteS when A is given as array

PermuteS (A, i, L, S) : the set of all strings with S as prefix and followed by a

permutation of L characters from {A[i], A[i + 1], ...}.

38



Recursive formulation of PermuteS when A is given as array

How to express subset of those strings from PermuteS (A, i, L, S) which begin

with A[i] ?

.... ?? ....
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Recursive formulation of PermuteS when A is given as array

How to express subset of those strings from PermuteS (A, i, L, S) which begin

with A[i] ?

PermuteS (A, i + 1, L − 1, S + A[i])
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Recursive formulation of PermuteS when A is given as array

How to express subset of those strings from PermuteS (A, i, L, S) which begin

with A[j], j > i ?

.... ?? ....

.... ?? ....

Please make sincere attempt to understand and answer the above question
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Recursive formulation of PermuteS when A is given as array

How to express subset of those strings from PermuteS (A, i, L, S) which begin

with A[j], j > i ?

PermuteS (A, i + 1, L − 1, S + A[i])

after we have swapped A[i] and A[j];

Mathematically it is correct, but we have to be cautious during implementation

because ...

here we involve changing the contents of array A.
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Recursive formulation of PermuteS when A is given as array
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Recursive formulation of PermuteS when A is given as array

How to express subset of those strings from PermuteS (A, i, L, S) which begin

with A[j], j > i ?

PermuteS (A, i + 1, L − 1, S + A[i])

after we have swapped A[i] and A[j];

Mathematically it is correct, but we have to be cautious during implementation

because ...

here we are changing the contents of array A.
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The recursive method for enumerating PermuteS(A,i,L,S)

public static void PermuteS(char[] A, int i, int L, String S)

{ if(L==0) System.out.println(S);

else

for(int j = i; j<A.length; j = j+1)

{

swap(A,i,j);

PermuteS(A,i+1,L-1,S+A[i]);

}

}

Inducive Assertion : P(A, i, L) :

For any array A, nonnegative integers i, L with A.length − i + L = k and any string S, the

method PermuteS(A, i, L, S) prints all strings of the form S+P where P is a permutation of L

characters chosen from {A[i], A[i + 1], ...}.

The state of Array A is same before and after PermuteS (A, i, L, S).
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The recursive method for enumerating PermuteS(A,i,L,S)

public static void PermuteS(char[] A, int i, int L, String S)

{ if(L==0) System.out.println(S);

else

for(int j = i; j<A.length; j = j+1)

{

swap(A,i,j);

PermuteS(A,i+1,L-1,S+A[i]);

}

}

Inducive Assertion : P(k) :

• For any array A, nonnegative integers i, L with A.length − i + L = k and any string S, the

method PermuteS(A, i, L, S) prints all strings of the form S+P where P is a permutation of L

characters chosen from {A[i], A[i + 1], ...}.

• The state of Array A is same before and after PermuteS (A, i, L, S).
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The recursive method for enumerating PermuteS(A,i,L,S)

public static void PermuteS(char[] A, int i, int L, String S)

{ if(L==0) System.out.println(S);

else

for(int j = i; j<A.length; j = j+1)

{

swap(A,i,j);

PermuteS(A,i+1,L-1,S+A[i]);

}

}

Inducive Assertion : P(k) :

• For any arrays A, nonnegative integers i, L with A.length − i + L = k and any string S,

the method PermuteS(A, i, L, S) prints all strings of the form S+P where P is a permutation of

L characters chosen from {A[i], A[i + 1], ...}.

The assertion is not true for the above method PermuteS(A, i, L, S).
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The recursive method for enumerating PermuteS(A,i,L,S)

public static void PermuteS(char[] A, int i, int L, String S)

{ if(L==0) System.out.println(S);

else

for(int j = i; j<A.length; j = j+1)

{

swap(A,i,j);

PermuteS(A,i+1,L-1,S+A[i]);

}

}

Inducive Assertion : P(k) :

• For any array A, nonnegative integers i, L with A.length − i + L = k and any string S, the

method PermuteS(A, i, L, S) prints all strings of the form S+P where P is a permutation of L

characters chosen from {A[i], A[i + 1], ...}.

Reason : since contents of array changes in recursive calls
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The recursive method for enumerating PermuteS(A,i,L,S)

public static void PermuteS(char[] A, int i, int L, String S)

{ if(L==0) System.out.println(S);

else

for(int j = i; j<A.length; j = j+1)

{

swap(A,i,j);

PermuteS(A,i+1,L-1,S+A[i]);

}

}

Inducive Assertion : P(k) :

• For any array A, nonnegative integers i, L with A.length − i + L = k and any string S, the

method PermuteS(A, i, L, S) prints all strings of the form S+P where P is a permutation of L

characters chosen from {A[i], A[i + 1], ...}.

Try execution on : : A=[a,b,c],i=0 and L = 3. It does not print any string starting with b
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The recursive method for enumerating PermuteS(A,i,L,S)

public static void PermuteS(char[] A, int i, int L, String S)

{ if(L==0) System.out.println(S);

else

for(int j = i; j<A.length; j = j+1)

{

swap(A,i,j);

PermuteS(A,i+1,L-1,S+A[i]);

}

}

Inducive Assertion : P(k) :

• For any array A, nonnegative integers i, L with A.length − i + L = k and any string S, the

method PermuteS(A, i, L, S) prints all strings of the form S+P where P is a permutation of L

characters chosen from {A[i], A[i + 1], ...}.

Idea : change the above method and augment the assertion accordingly.
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The recursive method for enumerating PermuteS(A,i,L,S)

public static void PermuteS(char[] A, int i, int L, String S)

{ if(L==0) System.out.println(S);

else

for(int j = i; j<A.length; j = j+1)

{

swap(A,i,j);

PermuteS(A,i+1,L-1,S+A[i]);

}

}

Inducive Assertion : P(k) :

• For any array A, nonnegative integers i, L with A.length − i + L = k and any string S, the

method PermuteS(A, i, L, S) prints all strings of the form S+P where P is a permutation of L

characters chosen from {A[i], A[i + 1], ...}.

• The state of Array A is same before and after PermuteS (A, i, L, S).
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The recursive method for enumerating PermuteS(A,i,L,S)

public static void PermuteS(char[] A, int i, int L, String S)

{ if(L==0) System.out.println(S);

else

for(int j = i; j<A.length; j = j+1)

{

swap(A,i,j);

PermuteS(A,i+1,L-1,S+A[i]);

swap(A,i,j);

}

}

Inducive Assertion : P(k) :

• For any array A, nonnegative integers i, L with A.length − i + L = k and any string S, the

method PermuteS(A, i, L, S) prints all strings of the form S+P where P is a permutation of L

characters chosen from {A[i], A[i + 1], ...}.

• The state of Array A is same before and after PermuteS (A, i, L, S).
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Nice recursive exercises

Available in file recur exercise.pdf on the course webpage.
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