ESc101 : Fundamental of Computing

I Semester 2008-09

Lecture 33

- Clarifying doubts from previous lecture
- Proving correctness of a recursive method
- More examples of recursion
- Input/Output (if time permits)

Note I have tried to simplify these slides after the lecture. I hope you will go through these slides and attempt the exercises given in file recur_exercise.pdf. Extra class is on Sunday 10:00 AM in CS101.

Understanding recursion requires only two basic tools

- The control flow when a method calls another method (may be itself) :

Lecture 30

- Mathematical Induction

How did you prove?

- For all natural number n,

$$
\sum_{0 \leq i \leq n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

- more complicated assertions which you might have proved before coming to IIT.

How did you prove?

- For all natural number n,

$$
\sum_{0 \leq i \leq n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

- more complicated problems which you might have proved before coming to IIT.
- ...

Principle of Mathematical Induction

Principle of Mathematical Induction

Let $\mathcal{P}(n)$ be a statement defined as function of integer n.

If the following assertions hold

1. $\mathcal{P}(n)$ is true for some $n=n_{0}$.
2. If $\mathcal{P}(i)$ is true for any $i \geq n_{0}$, then $\mathcal{P}(i+1)$ is also true.

Principle of Mathematical Induction

Let $\mathcal{P}(n)$ be a statement defined as function of integer n.

If the following assertions hold

1. $\mathcal{P}(n)$ is true for some $n=n_{0}$.
2. If $\mathcal{P}(i)$ is true for any $i \geq n_{0}$, then $\mathcal{P}(i+1)$ is also true.

We can conclude that $\mathcal{P}(n)$ is true for all $n>n_{0}$.

Principle of Mathematical Induction

Let $\mathcal{P}(n)$ be a statement defined as function of integer n.

If the following assertions hold

1. $\mathcal{P}(n)$ is true for some $n=n_{0}$.
2. If $\mathcal{P}(i)$ is true for any $i \geq n_{0}$, then $\mathcal{P}(i+1)$ is also true.

We can conclude that $\mathcal{P}(n)$ is true for all $n>n_{0}$.

Observe the similarity between induction and recursive formulation of a problem

Problem solved in last class

Enumerate the elements of the following sets.

1. Pattern (n, m) : the set of all strings formed by n |'s and m *'s
2. $\operatorname{Comb}(A, L)$: all combinations of length L formed from set A
3. Permute (A, L) : all permutations of length L formed using characters from set A)

Partially solved in last class

Steps used in solving the problems

- understand the domain of the problem and the set to be enumerated
- To express the set recursively/inductively ?

Doubt 1 : Why do we have to extend

- Pattern (n, m) to PatternS (n, m, S) ?
- $\operatorname{Comb}(A, L)$ to $\operatorname{CombS}(A, L, S)$?
- Permutation (A, L) to PermutationS (A, L, S) ?
- Partition (n) to PartitionS (n, S) ?

Can we express Pattern (n, m) recursively ?

- Pattern $(0,0)=\{" "\}$
- for $n>0, m>0$, Pattern $(n, m):$??

Can we express Pattern (n, m) recursively ?

- Pattern $(0,0)=\{" "\}$
- for $n>0, m>0$, $\operatorname{Pattern}(n, m)$ is union of two sets :

Can we express Pattern (n, m) recursively ?

- Pattern $(0,0)=\{" "\}$
- for $n>0, m>0$, Pattern (n, m) is union of two sets : set of strings of the form : '|' followed by Pattern $(n-1, m)$.
set of strings of the form : '*' followed by Pattern $(n, m-1)$.

Can we express Pattern (n, m) recursively ?

- Pattern $(0,0)=\{" "\}$
- for $n>0, m>0$, Pattern (n, m) is union of two sets : set of strings of the form : '|' followed by Pattern $(n-1, m)$.
set of strings of the form : '*' followed by Pattern $(n, m-1)$.

Not exact recursive formulation !!

So we generalize the definition of Pattern()

Let PatternS (n, m, S) be the set of all strings of the form $\mathrm{S}_{+} \mathrm{P}$ where P is the string containing n |'s and m *'s.

It is easy to observe that

$$
\operatorname{Pattern}(n, m)=\operatorname{PatternS}(n, m, " ") ;
$$

PatternS (n, m, S) can be expressed recursively quite easily

Recursive formulation of PatternS (n, m, S)

$$
\text { for } n>0, m>0 \text {, }
$$

$$
\operatorname{PatternS}(n, m, S)=\operatorname{PatternS}\left(n-1, m, S+\left.^{\prime}\right|^{\prime}\right) \bigcup \operatorname{PatternS}\left(n, m-1, S+^{\prime} *^{\prime}\right)
$$

Conslusion :

we extend

- Pattern (n, m) to $\operatorname{PatternS}(n, m, S)$
- $\operatorname{Comb}(A, L)$ to $\operatorname{CombS}(A, L, S)$
- Permutation (A, L) to PermutationS (A, L, S)
- Partition (n) to $\operatorname{PartitionS}(n, S)$
... ?? ...

Therefore,

we extend

- Pattern (n, m) to PatternS (n, m, S)
- $\operatorname{Comb}(A, L)$ to $\operatorname{CombS}(A, L, S)$
- Permutation (A, L) to PermutationS (A, L, S)
- Partition (n) to $\operatorname{PartitionS}(n, S)$
.. to express the sets exactly in an inductive/recursive manner

Recursive method for computing PatternS (n, m, S)

```
public static long PatternS(int n, int m, String S)
{ if(n==0 && m==0)
    System.out.println(S);
    else
    {
        if(n!=0) PatternS(n-1,m,S+'|');
        if(m!=0) PatternS(n,m-1,S+'*');
    }
}
```

What is the guarantee that this is method is correct?

Proof of correctness is based on mathematical induction

Proof that the method PatternS($\mathrm{n}, \mathrm{m}, \mathrm{S}$) is correct

What is the inductive assertion?

Proof that the method PatternS($\mathrm{n}, \mathrm{m}, \mathrm{S}$) is correct

The inductive assertion is :
$\mathcal{P}(\mathrm{k})$:
The method PatternS($\mathrm{n}, \mathrm{m}, \mathrm{S}$) for all nonnegative integers n, m with $n+m=k$ and any string S will print all strings of the form $S_{+}+P$ where P is the string containing n |'s and m *'s.

Proving that $\mathcal{P}(k)$ is true for all $k \geq 0$

Base Case: It is easy to conclude that $\mathcal{P}(0)$ is true.

Induction step : We have to prove $\mathcal{P}(k)$ for $k>0$ given that $\mathcal{P}(k-1)$ holds.
The Proof uses the principle of mathematical induction and uses

- the description of the method PatternS (n, m, S)
- the recursive formulation of the set PatternS(n, m, S).
(We use bold letters to distinguish set from the method)
Note: The detailed proof has been provided in the file inductive_proof.pdf available on the website.

All combinations of length L formed by characters from set A

Let us first generalize Comb to CombS

$S \cap A=\emptyset$
Combs(A,L,S) : All strings formed by concatenating S with L characters selected from A where order does not matter among characters.

It can be seen that

$$
\operatorname{Comb}(A, L)=\operatorname{CombS}(A, L, " ")
$$

Recursive formulation of $\operatorname{CombS}(A, L, S)$: when $L \neq 0$ and $|A|>L$

Consider any $x \in A$.
CombS(A,L,S) consists of two disjoint groups.

- Those combinations in which \mathbf{x} is present.
- Those combinations in which \mathbf{x} is not present.

Complete recursive formulation of $\operatorname{CombS}(\mathrm{A}, \mathrm{L}, \mathrm{S})$

Let $x \in A$.
$\operatorname{CombS}(\mathrm{A}, \mathrm{L}, \mathrm{S})=$
$= \begin{cases}\mathrm{S} & \text { if } L=0 \\ \operatorname{CombS}\left(A \backslash\{x\}, L-1, S+^{\prime} x^{\prime}\right) & \text { if } L>0 \text { and }|A|=L . \\ \operatorname{CombS}\left(A \backslash\{x\}, L-1, S+^{\prime} x^{\prime}\right) \bigcup & \\ \operatorname{CombS}(A \backslash\{x\}, L, S) & \text { if } L>0 \text { and }|A|>L .\end{cases}$

Complete recursive formulation of $\operatorname{CombS}(A, L, S)$ with A as array

$\operatorname{CombS}(A, i, L, S)=$ All strings formed by concatenating S with L characters selected from $\{A[i], A[i+1], \ldots\}$ where order does not matter among characters.

Recall in the above definition, we assume that S does not have any character from $\{A[i], A[i+1], \ldots\}$.

Complete recursive formulation of $\operatorname{CombS}(A, L, S)$ with A as array
$\operatorname{CombS}(A, i, L, S)=$
$= \begin{cases}\mathbf{s} & \text { if } L=0 \\ \operatorname{CombS}(A, i+1, L-1, S+A[i]) & \text { if } L>0 \text { and A.length }-i=L \\ \operatorname{CombS}(A, i+1, L-1, S+A[i]) \cup & \\ \operatorname{CombS}(A, i+1, L, S) & \text { if } L>0 \text { and } A . l e n g t h-i>L\end{cases}$

Recursive method for CombS(A,L,S)

```
public static void CombS(char[] A, int i, int L, String S)
{ int current_size_of_A= A.length-i;
    if(L==0) System.out.println(S);
    else
    {
```

 CombS (A, i+1, L-1, S+A[i]);
 if (current_size_of_A>L)
 Combs (A, i+1,L,S);
 \}
 \}

Recursive method for CombS(A,L,S)

```
public static void CombS(char[] A, int i, int L, String S)
{ int current_size_of_A= A.length-i;
    if(L==0) System.out.println(S);
    else
    {
            CombS(A,i+1,L-1,S+A[i]);
            if(current_size_of_A>L)
            CombS(A,i+1,L,S);
    }
}
What is proof of correctness ?
```


Recursive method for CombS(A,L,S)

```
public static void CombS(char[] A, int i, int L, String S)
{ int current_size_of_A= A.length-i;
    if(L==0) System.out.println(S);
    else
    {
            CombS(A,i+1,L-1,S+A[i]);
            if(current_size_of_A>L)
            CombS(A,i+1,L,S);
    }
}
What is inductive Assertion : \(\mathcal{P}(k)\) ?
```


Recursive method for CombS(A,L,S)

```
public static void CombS(char[] A, int i, int L, String S)
{ int current_size_of_A= A.length-i;
    if(L==0) System.out.println(S);
    else
    {
```

 CombS (A, i+1, L-1, S+A[i]);
 if(current_size_of_A>L)
 CombS (A, i+1,L,S);
 \}
 \}
$\mathcal{P}(k)$: (try to prove similar to the proof of PatternS $(\mathrm{n}, \mathrm{m}, \mathrm{S})$)
For all arrays A, nonnegative integers i, L such that A.length $-i+L=k$, and any string S, the method $\operatorname{CombS}(\mathrm{A}, \mathrm{i}, \mathrm{L}, \mathrm{S})$ prints All strings formed by concatenating S with L characters selected from $\{A[i], A[i+1], \ldots\}$ where order does not matter among characters.

Permutation of L characters chosen from set A

Domain : L is non-negative integer, A is a set of character with $|A| \geq L$.

Permute (A, L) : the set of all strings of length L whose characters belong to A.

Aim : To design a program to compute $\operatorname{Permute}(A, L)$

Extension of Permute to PermuteS

PermuteS (A, L, S) : the set of all strings with S as prefix and followed by a permutation of L characters from A.

It can be seen that

$$
\operatorname{Permute}(A, L)=\operatorname{Permute} \mathbf{S}(A, L, " ")
$$

Recursive formulation of PermuteS(A,L,S)

PermuteS $(A, L, S)=\{$

Recursive formulation of PermuteS(A,L,S)

$\operatorname{PermuteS}(A, L, S)= \begin{cases}S & \text { if } L=0 \\ \bigcup_{x \in A} \operatorname{PermuteS}\left(A \backslash\{x\}, L-1, S+^{\prime} x^{\prime}\right) & \text { if } L>0\end{cases}$

Recursive formulation of PermuteS when A is given as array

PermuteS (A, i, L, S) : the set of all strings with S as prefix and followed by a permutation of L characters from $\{A[i], A[i+1], \ldots\}$.

Recursive formulation of PermuteS when A is given as array

How to express subset of those strings from $\operatorname{PermuteS}(A, i, L, S)$ which begin with $A[i]$?
\qquad

Recursive formulation of PermuteS when A is given as array

How to express subset of those strings from $\operatorname{PermuteS}(A, i, L, S)$ which begin with $A[i]$?

$$
\text { PermuteS }(A, i+1, L-1, S+A[i])
$$

Recursive formulation of PermuteS when A is given as array

How to express subset of those strings from $\operatorname{PermuteS}(A, i, L, S)$ which begin with $A[j], j>i$?

$$
\begin{aligned}
& \text {... ?? } \\
& \text {... ?? }
\end{aligned}
$$

Please make sincere attempt to understand and answer the above question

Recursive formulation of PermuteS when A is given as array

How to express subset of those strings from $\operatorname{PermuteS}(A, i, L, S)$ which begin with $A[j], j>i$?

> PermuteS $(A, i+1, L-1, S+A[i])$
> after we have swapped $A[i]$ and $A[j] ;$

Recursive formulation of PermuteS when A is given as array

How to express subset of those strings from $\operatorname{PermuteS}(A, i, L, S)$ which begin with $A[j], j>i$?

$$
\begin{aligned}
& \text { PermuteS }(A, i+1, L-1, S+A[i]) \\
& \text { after we have swapped } A[i] \text { and } A[j] ;
\end{aligned}
$$

Mathematically it is correct, but we have to be cautious during implementation because ...

Recursive formulation of PermuteS when A is given as array

How to express subset of those strings from $\operatorname{PermuteS}(A, i, L, S)$ which begin with $A[j], j>i$?

$$
\begin{aligned}
& \text { PermuteS }(A, i+1, L-1, S+A[i]) \\
& \text { after we have swapped } A[i] \text { and } A[j] ;
\end{aligned}
$$

Mathematically it is correct, but we have to be cautious during implementation because ...
here we are changing the contents of array A.

The recursive method for enumerating PermuteS(A,i,L,S)

```
public static void PermuteS(char[] A, int i, int L, String S)
{ if(L==0) System.out.println(S);
    else
        for(int j = i; j<A.length; j = j+1)
        {
            swap(A,i,j);
            PermuteS(A,i+1,L-1,S+A[i]);
        }
}
```


The recursive method for enumerating PermuteS(A,i,L,S)

```
public static void PermuteS(char[] A, int i, int L, String S)
{ if(L==0) System.out.println(S);
    else
        for(int j = i; j<A.length; j = j+1)
        {
            swap(A,i,j);
            PermuteS(A,i+1,L-1,S+A[i]);
        }
}
```

Inducive Assertion: $\mathcal{P}(k)$:

- For any array A, nonnegative integers i, L with A.length $-i+L=k$ and any string S , the method PermuteS (A, i, L, S) prints all strings of the form $\mathrm{S}+\mathrm{P}$ where P is a permutation of L characters chosen from $\{A[i], A[i+1], \ldots\}$.

The recursive method for enumerating PermuteS(A,i,L,S)

```
public static void PermuteS(char[] A, int i, int L, String S)
{ if(L==0) System.out.println(S);
    else
        for(int j = i; j<A.length; j = j+1)
        {
            swap(A,i,j);
            PermuteS(A,i+1,L-1,S+A[i]);
        }
}
```

Inducive Assertion: $\mathcal{P}(k)$:

- For any arrays A, nonnegative integers i, L with A.length $-i+L=k$ and any string S , the method PermuteS (A, i, L, S) prints all strings of the form $\mathrm{S}+\mathrm{P}$ where P is a permutation of L characters chosen from $\{A[i], A[i+1], \ldots\}$.

The assertion is not true for the above method PermuteS (A, i, L, S).

The recursive method for enumerating PermuteS(A,i,L,S)

```
public static void PermuteS(char[] A, int i, int L, String S)
{ if(L==0) System.out.println(S);
    else
        for(int j = i; j<A.length; j = j+1)
        {
            swap(A,i,j);
            PermuteS(A,i+1,L-1,S+A[i]);
        }
}
```

Inducive Assertion: $\mathcal{P}(k)$:

- For any array A, nonnegative integers i, L with A.length $-i+L=k$ and any string S , the method PermuteS (A, i, L, S) prints all strings of the form $\mathrm{S}+\mathrm{P}$ where P is a permutation of L characters chosen from $\{A[i], A[i+1], \ldots\}$.

Reason : since contents of array changes in recursive calls

The recursive method for enumerating PermuteS(A,i,L,S)

```
public static void PermuteS(char[] A, int i, int L, String S)
{ if(L==0) System.out.println(S);
    else
        for(int j = i; j<A.length; j = j+1)
        {
            swap(A,i,j);
            PermuteS(A,i+1,L-1,S+A[i]);
        }
}
```

Inducive Assertion: $\mathcal{P}(k)$:

- For any array A, nonnegative integers i, L with A.length $-i+L=k$ and any string S , the method PermuteS (A, i, L, S) prints all strings of the form $\mathrm{S}+\mathrm{P}$ where P is a permutation of L characters chosen from $\{A[i], A[i+1], \ldots\}$.

Try execution on : : $A=[a, b, c], i=0$ and $L=3$. It does not print any string starting with b

The recursive method for enumerating PermuteS(A,i,L,S)

```
public static void PermuteS(char[] A, int i, int L, String S)
{ if(L==0) System.out.println(S);
    else
        for(int j = i; j<A.length; j = j+1)
        {
            swap(A,i,j);
            PermuteS(A,i+1,L-1,S+A[i]);
        }
}
```

Inducive Assertion: $\mathcal{P}(k)$:

- For any array A, nonnegative integers i, L with A.length $-i+L=k$ and any string S , the method PermuteS (A, i, L, S) prints all strings of the form $\mathrm{S}+\mathrm{P}$ where P is a permutation of L characters chosen from $\{A[i], A[i+1], \ldots\}$.

Idea : change the above method and augment the assertion accordingly.

The recursive method for enumerating PermuteS(A,i,L,S)

```
public static void PermuteS(char[] A, int i, int L, String S)
{ if(L==0) System.out.println(S);
    else
        for(int j = i; j<A.length; j = j+1)
        {
            swap(A,i,j);
            PermuteS(A,i+1,L-1,S+A[i]);
        }
}
```

Inducive Assertion: $\mathcal{P}(k)$:

- For any array A, nonnegative integers i, L with A.length $-i+L=k$ and any string S , the method PermuteS (A, i, L, S) prints all strings of the form $\mathrm{S}+\mathrm{P}$ where P is a permutation of L characters chosen from $\{A[i], A[i+1], \ldots\}$.
- The state of Array A is same before and after $\operatorname{PermuteS}(A, i, L, S)$.

The recursive method for enumerating PermuteS(A,i,L,S)

```
public static void PermuteS(char[] A, int i, int L, String S)
{ if(L==0) System.out.println(S);
    else
        for(int j = i; j<A.length; j = j+1)
        {
            swap(A,i,j);
            PermuteS(A,i+1,L-1,S+A[i]);
            swap(A,i,j);
        }
}
```

Inducive Assertion: $\mathcal{P}(k)$:

- For any array A, nonnegative integers i, L with A.length $-i+L=k$ and any string S , the method PermuteS (A, i, L, S) prints all strings of the form $\mathrm{S}+\mathrm{P}$ where P is a permutation of L characters chosen from $\{A[i], A[i+1], \ldots\}$.
- The state of Array A is same before and after $\operatorname{PermuteS}(A, i, L, S)$.

Nice recursive exercises

Available in file recur_exercise.pdf on the course webpage.

