
ESc101 : Fundamental of Computing

I Semester 2008-09

Lecture 31+32

• Solving problems recursively

• Examples

Implementation of Recursion involves “method calling itse lf”. So it is

essential that you FULLY understand the invocation of metho ds from

Lecture 30 to really understand recursion and its examples

1

Computing power xn with fewer multiplications

Domain : x is a positive real number, and n is a non-negative integer.

xn =















1 if n = 0.

x⌊n

2
⌋ × x⌊n

2
⌋ if n 6= 0 and n is even.

x⌊n

2
⌋ × x⌊n

2
⌋ × x if n 6= 0 and n is odd.

How to use this formulation for minimizing multiplications ?

2

Computing power xn with fewer multiplications

public static long power(double x, int n)

{ if(n==0)

return 1;

else

{

double temp = power(x,n/2);

if(n%2==0)

return temp*temp;

else

return temp*temp*x;

}

}

3

Computing all patterns (strings) formed by n |’s and m *’s

Domain : n, m are non-negative integers.

Let Pattern (n, m) be the set of all strings formed by n |’s and m *’s.

How to express Pattern (n, m) recursively ?

4

we generalize the definition of Pattern()

Let PatternS (n, m, S) be the set of all strings of the form S+P where P is the

string containing n |’s and m *’s.

It is easy to observe that

Pattern (n, m) = PatternS (n, m, ” ”);

How to express PatternS (n, m, S) recursively ?

5

Recursive formulation of PatternS(n,m, S)

PatternS (n, m, S) =







































































S if n = m = 0

PatternS (n − 1, 0, S +′ |′) if n 6= 0, m = 0

PatternS (0, m − 1, S +′ ∗′) if n = 0, m 6= 0

PatternS (n − 1, m, S +′ |′)
⋃

PatternS (n, m − 1, S +′ ∗′) if n 6= 0, m 6= 0

6

Recursive method for computing PatternS(n,m, S)

public static long PatternS(int n, int m, String S)

{ if(n==0 && m==0)

System.out.println(S);

else

{

if(n!=0) PatternS(n-1,m,S+’|’);

if(m!=0) PatternS(n,m-1,S+’*’);

}

}

7

All combinations of length L formed by characters from set A

8

Comb(A,L) : all combinations of length L formed from set A

Domain : A is a set and L is a non-negative integer and |A| ≥ L.

Example : For A = {a,b,c,d}, L=2, the solution is :
Comb(A,L) :

ab

ac

ad

bc

bd

cd

Note : order does not matter, i.e., ab=ba

9

What is recursive formulation of Comb(A,L) ?

10

Let us first generalize Comb to CombS

S ∩ A = ∅

Combs (A,L,S) : All strings formed by concatenating S with L characters selected

from A where order does not matter among characters .

It can be seen that

Comb (A, L) = CombS (A, L, ” ”)

11

Recursive formulation of CombS(A,L,S) : Two trivial cases

1. What is CombS (A,L,S) if L=0 ?

Answer = ...

2. What is CombS (A,L,S) if L>0 but |A|=L ?

Answer = ...

12

Recursive formulation of CombS(A,L,S) : Two trivial cases

1. What is CombS (A,L,S) if L=0 ?

Answer = S

2. What is CombS (A,L,S) if L>0 but |A|=L,

Answer = ...

13

Recursive formulation of CombS(A,L,S) : Two trivial cases

1. What is CombS (A,L,S) if L=0 ?

Answer = S

2. What is CombS (A,L,S) if L>0 but |A|=L ?

Answer = CombS (A\{x},L-1,S+x) where x ∈ A.

14

Recursive formulation of CombS(A,L,S) : when L 6=0 and |A| >L

Consider any x ∈ A.

CombS (A,L,S) consists of two disjoint groups.

• Those combinations in which x is present.

Comb (A\{x}, L − 1, S + x)

• Those combinations in which x is not present.

Comb (A\{x}, L, S)

15

Recursive formulation of CombS(A,L,S) : when L 6=0 and |A| >L

Consider any x ∈ A.

CombS (A,L,S) consists of two disjoint groups.

• Those combinations in which x is present.

Comb (A\{x}, L − 1, S + x)

• Those combinations in which x is not present.

Comb (A\{x}, L, S)

16

Recursive formulation of CombS(A,L,S) : when L 6=0 and |A| >L

Consider any x ∈ A.

CombS (A,L,S) consists of two disjoint groups.

• Those combinations in which x is present.

Comb (A\{x}, L − 1, S + x)

• Those combinations in which x is not present.

Comb (A\{x}, L, S)

17

Complete recursive formulation of CombS(A,L,S)

Let x ∈ A.

CombS (A,L,S) =

=



















































S if L = 0

CombS (A\{x}, L − 1, S +′ x′) if L > 0 and |A| = L.

CombS (A\{x}, L − 1, S +′ x′)
⋃

CombS (A\{x}, L, S) if L > 0 and |A| > L.

18

Complete recursive formulation of CombS(A,L,S) with A as ar ray

CombS (A, i, L, S) = All strings formed by concatenating S with L characters

selected from {A[i], A[i + 1], ...} where order does not matter among

characters .

Recall in the above definition, we assume that S does not have any character

from {A[i], A[i + 1], ...}.

19

Complete recursive formulation of CombS(A,L,S) with A as ar ray

CombS (A, i, L, S) =

=



















































S if L = 0

CombS (A, i + 1, L − 1, S + A[i]) if L > 0 and A.length − i = L.

CombS (A, i + 1, L − 1, S + A[i])
⋃

CombS (A, i + 1, L, S) if L > 0 and A.length − i > L.

20

Recursive method for CombS(A,L,S)

public static void CombS(char[] A, int i, int L, String S)

{ int current_size_of_A= A.length-i;

if(L==0) System.out.println(S);

else

{

CombS(A,i+1,L-1,S+A[i]);

if(current_size_of_A>L)

CombS(A,i+1,L,S);

}

}

21

Permutation of L characters chosen from set A

Domain : L is non-negative integer, A is a set of character with |A| ≥ L.

Perm (A, L) : the set of all strings of length L whose characters belong to A.

Aim : To design a program to compute Perm (A, L)

22

Extension of Perm to PermS

PermS (A, L, S) : the set of all strings with S as prefix and followed by a

permutation of L characters from A.

It can be seen that

Perm(A, L) = PermS(A, L, “”)

23

Recursive formulation of PermS(A,L,S)

PermS(A, L, S) =















S if L = 0

⋃

x∈A
PermS (A\{x}, L − 1, S +′ x′) if L > 0

24

Recursive formulation of PermS(A,L,S)

PermS(A, L, S) =















S if L = 0

⋃

x∈A
PermS (A\{x}, L − 1, S +′ x′) if L > 0

25

Recursive formulation of PermS when A is given as array

PermS (A, i, L, S) : the set of all strings with S as prefix and followed by a

permutation of L characters from {A[i], A[i + 1], ...}.

26

Recursive formulation of PermS when A is given as array

How to express subset of those strings from PermS (A, i, L, S) which begin with

A[i] ?

.... ??

27

Recursive formulation of PermS when A is given as array

How to express subset of those strings from PermS (A, i, L, S) which begin with

A[i] ?

PermS (A, i + 1, L − 1, S + A[i])

28

Recursive formulation of PermS when A is given as array

How to express subset of those strings from PermS (A, i, L, S) which begin with

A[j], j > i ?

.... ??

.... ??

Please make sincere attempt to understand and answer the above question

29

Nice recursive exercises will be posted today

30

