
RandomAccessFile

 This class allows the random movement of the file pointers. The

file pointer can be moved back and forth.

 Constructor:

 RandomAccessFile(String name, String mode)

 Creates a random access file stream to read from, and optionally to

write to, a file with the specified name.

 Mode can be either of "r" or "rw".

 "r" - Open for reading only. Invoking any of the write methods

of the resulting object will cause an IOException to be thrown.

 "rw" - Open for reading and writing. If the file does not

already exist then an attempt will be made to create it.

 If the file is not found it throws FileNotFoundException.

 Methods

 long length() - Returns the length of this file.

 int read() - Reads a byte of data from this file.

 The byte is returned as an integer in the range 0

to 255 or -1 if the end of the file has been reached.

 This method blocks if no input is yet available.

 int read(byte[] b) - Reads up to b.length bytes of data from this

file into an array of bytes.

 boolean readBoolean() - Reads a boolean from this file.

 byte readByte() - Reads a signed eight-bit value from this file.

 char readChar() - Reads a Unicode character from this file.

 double readDouble() - Reads a double from this file.

 float readFloat() - Reads a float from this file.

 int readInt() - Reads a signed 32-bit integer from this file.

 String readLine() - Reads the next line of text from this file.

 long readLong() - Reads a signed 64-bit integer from this file.

 short readShort() - Reads a signed 16-bit number from this

file.

 int readUnsignedByte() - Reads an unsigned eight-bit number from

this file.

 int readUnsignedShort() - Reads an unsigned 16-bit number from

this file.

 void seek(long pos) - Sets the file-pointer offset, measured from

the beginning of this file, at which the next read or write occurs.

 void setLength(long newLength) - Sets the length of this file.

 If the present length of the file as

returned by the length method is greater than the newLength

 argument then the file will be

truncated

 int skipBytes(int n) - Attempts to skip over n bytes of input

discarding the skipped bytes.

 void write(int b) - Writes the specified byte to this file. The

write starts at the current file pointer.

 b - the byte to be written.

 void writeBoolean(boolean v) - Writes a boolean to the file as a

one-byte value.

 void writeByte(int v) - Writes a byte to the file as a one-byte

value.

 void writeBytes(String s) - Writes the string to the file as a

sequence of bytes.

 void writeChar(int v) - Writes a char to the file as a two-byte

value, high byte first.

 void writeChars(String s) - Writes a string to the file as a

sequence of characters.

 void writeDouble(double v) - Converts the double argument to a

long using the doubleToLongBits method in class Double,

 and then writes that long value to the file

as an eight-byte quantity, high byte first.

 void writeFloat(float v) - Converts the float argument to an int

using the floatToIntBits method in class Float,

 and then writes that int value to the file

as a four-byte quantity, high byte first.

 void writeInt(int v) - Writes an int to the file as four bytes,

high byte first.

 void writeLong(long v) - Writes a long to the file as eight bytes,

high byte first.

 void writeShort(int v) - Writes a short to the file as two bytes,

high byte first

Visibility

Access or visibility rules determine whether a method or a data variable

can be accessed by another method in another class or subclass.

Java provides for 4 access modifiers :

 1. public - It makes classes, methods, or data available to any other

method in any other class or subclass.

 2. protected - accessible by the package classes and any subclasses

that are in other packages .

 3. "-" - accessible to classes in the same package but not by classes

in other packages, even if these are subclasses.

 4. private - accessible only within the class. Even methods in

subclasses in the same package do not have access.

 Note that a java file can have only one public class.

Binary I/O

The java.io package contains two classes, InputStream and OutputStream,

from which most of the other classes in the package derive.

The InputStream class is an abstract superclass that provides a minimal

programming interface and a partial implementation of

input streams. The InputStream class defines methods for reading bytes or

arrays of bytes, marking locations in the stream,

skipping bytes of input, finding out the number of bytes available for

reading, and resetting the current position within

the stream. An input stream is automatically opened when you create it.

You can explicitly close a stream with the close method.

The OutputStream class is an abstract superclass that provides a minimal

programming interface and a partial implementation of

output streams. OutputStream defines methods for writing bytes or arrays

of bytes to the stream. An output stream is

automatically opened when you create it. You can explicitly close an

output stream with the close method.

OutputStream

 This abstract class is the superclass of all classes representing

an output stream of bytes.

An output stream accepts output bytes and sends them to some sink.

Methods

void close() - Closes this output stream and releases any system

resources associated with this stream.

void flush() - Flushes this output stream and forces any buffered output

bytes to be written out.

abstract void write(int b) - Writes the specified byte to this output

stream.

Throws IOException if an I/O error occurs

InputStream

public abstract int read() throws IOException

 Reads the next byte of data from the input stream.

 The value byte is returned as an int in the range 0 to

255.

 If no byte is available because the end of the stream

has been reached, the value -1 is returned.

 This method blocks until input data is available, the

end of the stream is detected, or an exception is thrown.

 Returns: the next byte of data, or -1 if the end of the

stream is reached.

 Throws: IOException - if an I/O error occurs.

public long skip(long n) throws IOException

 Skips over and discards n bytes of data from this input

stream. The skip method may,

 for a variety of reasons, end up skipping over some smaller

number of bytes, possibly 0.

 This may result from any of a number of conditions;

reaching end of file before

 n bytes have been skipped is only one possibility. The

actual number of bytes skipped is returned.

 If n is negative, no bytes are skipped.

 The skip method of InputStream creates a byte array and

then repeatedly reads into it until n bytes

 have been read or the end of the stream has been reached.

 Returns: the actual number of bytes skipped.

 Throws: IOException - if an I/O error occurs.

public void close() throws IOException

 Closes this input stream and releases any system

resources associated with the stream.

 Throws: IOException - if an I/O error occurs.

Reader Class

Constructor: protected Reader() - Create a new character-stream

reader.

public int read() throws IOException

 Read a single character. This method will block until a

character is available, an I/O error occurs,

 or the end of the stream is reached.

 Returns: The character read, as an integer in the range 0 to 65535

or -1 if the end of the stream has been reached

 Throws: IOException - If an I/O error occurs

public long skip(long n) throws IOException

 Skip n characters. This method will block until some

characters are available, an I/O error occurs,

 or the end of the stream is reached.

 Returns: The number of characters actually skipped

 Throws: IllegalArgumentException - If n is negative.

 IOException - If an I/O error occurs

public abstract void close() throws IOException

 Close the stream. Once a stream has been closed, further

read() invocations will throw an IOException.

 Closing a previously-closed stream, however, has no effect.

 Throws: IOException - If an I/O error occurs

Packages

 In Java source files, the package that the file belongs to is

specified with the package keyword.

ex:- package java.awt.event;

 Classes within a package can access classes and members declared

with default access and class members

declared with the protected access modifier. Default access is enforced

when neither the public, protected nor

private access modifier is specified in the declaration. By contrast,

classes in other packages cannot access

classes and members declared with default access. Class members declared

as protected can be accessed from the

classes in same as well as classes in other packages that are subclasses

of the declaring class.

 The CLASSPATH is an environment variable, that tells the Java

Virtual Machine where to look for user-defined classes

and packages in Java programs.

