
 More On inheritance

What you can do in subclass regarding methods:

• The inherited methods can be used directly as they are. You can write a new static
method in the subclass that has the same signature as the one in the super class,
thus hiding it. You can declare new methods in the subclass that are not in the
super class.

class SubClass extends SuperClass

{

……..

….....

……

}

All the methods (except private) of Superclass visible to SubClass.

Consider the example given below:

 Objects Methods

 osub m3,m4

osuper m1,m2SuperClass

 SubClass

In this example super / base class has methods m1, m2 and sub/derived class has
methods m3 and m4. superclass has object name osuper and subclass has object
osub.

Now see the following:

• osub.m3(<args>)

• osub.m4(<args>)

These are fine because osub is an object of subclass and m3 and m4 are also methods
of subclass. We can access member data and member function of a class using its
object.

Similarly:

• osuper.m2(<args>)

• osuper.m1(<args>)

are correct

 see the followings:

• osub.m1(<args>)

• osub.m2(<args>)

• osuper.m3(<args>)

• osuper.m4(<args>)

In first two statements, osub is an object of derived/subclass and m1 and m2 are
methods of base/super class. As we know that all the methods(except those with the
scope private) of base class are also visible to subclass and we can access them by
object of subclass. Both the statements are correct.

In third and last statement osuper is an object of super class,while m3 and m4 are
methods of sub class, and we cannot access the methods of sub class by object of
base class. Both the statement will not work.

Type Casting:

• ((superclass)osub).m1

• ((superclass)osub).m2

These will work because the final reference is of super class and we are accessing
methods of super class.

• ((superclass)osub).m3

This won’t work because final reference is of super class and we are accessing method
of subclass(m3 is a method of subclass) by using reference of super class we cannot
access method of subclass.

Now consider the example 2 :

 Person is a base class has a derived class Student because Student is also a Person.
Student extends Person

Class Student extends Person

{

…………..

…………..

};

Person person1 = new Student();

Student student1 = (Student) person1; // Explicit type casting

Runtime Type Mismatch Exception:

Even with explicit casting, you could still end up having a runtime error

● Example:

 Let's assume Student class is a child class of Person class

 Let's assume Teacher class is also a child class of Person class

Person person1= new Student ();

Person person2 = new Teacher ();

Student student1 = (Student) person1; // Explicit type casting

// No compile error, but runtime type mismatch exception if

Student student2 = (Student) person2

instanceof Operator:

it’s a binary operator, takes an object and a class as operand and returns true and false.

See the following following from first example:

(osub instanceof Subclass) // it will return true.

(osub instanceof Superclass) // it will also return true

Use instanceof Operator to Prevent Runtime Type Mismatch Error:

You can check the type of the object instance using instanceof before the type casting

 Example:

Person person1 = new Student();

Person person2 = new Teacher();

 // Do the casting only when the type is verified

 if (person2 instanceof Student) {

 Student student2 = (Student) person2;

 }

Super cosmic class: every class extends a class called Object class.

Object class called super cosmic class.

– Object Class is parent class of all classes – In Java language, all classes
are sub classed (extended) from the Object super class

– Object class is the only class that does not have a parent class

– Defines and implements behavior common to all classes including the
ones that you write.

Object class has following methods:

a) getClass() , b) equals() , c) toString() …….. etc.

Assume that you have a base class name SuperClass and derived class name
SubClass.

 Object Class

 SubClass

 SuperClass

You can override these methods like tostring() etc, that are also in Object class. Call to
these methods will traverse the inheritance hierarchy from leaf to root, i.e. from the
calling class up to Object class, until an appropriate match is found.

