
Contents:

We studied a code for implementing Sudoku for the major portion of the lec-
ture. In the last 10 minutes, we also looked at how we can call one constructor
from another using this (), the use of break and continue statements.

Class Sudoku

This class simulates the Sudoku board. Its important methods are setCell,
doRow, doColumn and doBlock.

Attributes

BLKSIZE = 3

Block size - Each block is made up of 3× 3 cells.

SIZE

The Sudoku board is a square of blocks (defined above). Thus, if BLKSIZE =
3 then, a Sudoku board is a square of 3× 3 blocks, or 9× 9 cells.

board

The Sudoku game board.

Methods

Empty constructor

setCell (int i, int j, String val)

This method sets the specified cell to the value in String val.
if ((i<0) || (i >= SIZE) || (j < 0) || (j > SIZE)) return;

Do nothing if the indices are invalid.
if ((val.length() == 0) || (val.length() > 1))

{
board[i][j] = new SudokuCell();

return;

}
if ((val.charAt(0) < ’0’) || (val.charAt(0) > (’0’ + Sudoku.SIZE)))

{

1

board[i][j] = new SudokuCell();

return;

}
val is of type String. Since it should contain a single digit signifying the

value at the cell, it should be of length exactly equal to 1. This is checked
by the first if condition. Now we know that the length of the string val is
1. But this should also be a digit. That is checked by the next if condition.
So, now we know that val has a single digit at index 0.

board[i][j] = new SudokuCell(val.charAt(0) - ’0’);

The cell is set with the integer value of val. The constructor of SudokuCell
takes an integer as input. If we had not performed the above checks, then
this line (and hence the method) would not have worked as expected by the
caller. Please note that 0 is not a valid input. But this line will be executed if
val = "0" as well. However, this situation is taken care of in the constructor
of SudokuCell.

doRow(int i)

If a value is frozen for any cell in the ith row, then this method removes
this value from the contents[] array of all the cells in that row. If the
contents[] array of atleast one cell is modified in this manner, then the
method returns true. Else, it returns false.

if ((i < 0) || (i >= SIZE)) return change;

change has been set to false. Thus, if an invalid row number is given,
then the method returns false, saying that no changes have been made in
any cell.

for (j=0; j<SIZE; j++) {
t = board[i][j].getValue();

j holds the column number. getValue will return the value at location
[i][j] if the value there has been frozen. Else it returns 0.

if (t != 0) {
int k;

for (k=0; k<SIZE; k++) {
if (k != j)

change |= board[i][k].block(t);

}
}
If the value at [i][j] has been frozen to t, then we proceed to block the

value t from all the cells in that row. That is, the contents[] array of all the
cells in that row (except the one in which the value was found to be frozen,
j) will not contain t after this.

2

If the contents[] array of any cell has been modified in this manner,
then the boolean indicator, change becomes true.

doColumn(int i)

The functionality of this method is the same as that of doRow. Now we check
the cells in each row of the ith column. Hence, we have, t = board[j][i].getValue();

and change |= board[k][i].block(t);. That is, we read the frozen value
in each cell in the ith column using board[j][i].getValue(). Once we
find that a value has been frozen, we check eack cell in the ith row using
board[k][i].block(t).

doBlock(int xblk, int yblk)

A block is defined to be a square of BLKSIZE × BLKSIZE cells. And,
BLKSIZE × BLKSIZE such blocks make up a Sudoku board. While
playing Sudoku, we also need to check that if a value is frozen in any cell of
the block, then it does not appear in the contents[] array of any other cell
in that block.

The functionality of this method is the same as that of doRow and doCloumn.
That is, if a value is frozen then it must be ensured that it does not appear
in any other cell in the block. If a cell’s contents[] array has been modified,
return true, else return false.

However, this method is the trickiest of all other methods in the class.
Reason: The cells are numbered according to the row number and column
number in the whole of Sudoku board, and not according to their locations
in the block.

The argument for the method specifies which block we should be checking.
There are BLKSIZE number of rows and BLKSIZE number of columns.
e.g, if BLKSIZE = 3, then there are 3 rows and 3 columns of blocks.

if ((xblk<0) || (xblk>=BLKSIZE) || (yblk<0) || (yblk>=BLKSIZE))

return change;

change is initialized to false. Hence, if invalid block number is passed
as argument, then we return false.

for (i=0; i<BLKSIZE; i++)

for (j=0; j<BLKSIZE; j++)

Check for each row and each column in the block.
t = board[xblk*BLKSIZE + i][yblk*BLKSIZE + j].getValue(); i holds

the row number in the block and ranges from 0 to BLKSIZE − 1. j holds
the column number in the block and ranges from 0 to BLKSIZE − 1. We

3

now need to calculate the absolute row and column numbers (in the Sudoku
board).

Please observe that the 0th row, 0th column cell in block [xblk, yblk] could
be accessed in the Sudoku board using the index [xblk ∗ BLKSIZE, yblk ∗
BLKSIZE]. When the row index or column index in the block increases by
1, the index in the board also increases by exactly 1. Thus, the ith row, jth
column cell in block [xblk, yblk] could be accessed in the Sudoku board using
the index [xblk ∗BLKSIZE + i, yblk ∗BLKSIZE + j]. Method getValue

will return the value at specified location if the value there has been frozen.
Else it returns 0.

if (t != 0) {
int k, l;

for (k=0; k<BLKSIZE; k++)

for (l=0; l<BLKSIZE; l++)

if ((k!=i) || (l!=j))

change |= board[xblk*BLKSIZE + k][yblk*BLKSIZE + l].block(t);

}
If the value at [i][j] in the specified block has been frozen to t, then we

proceed to block the value t from all the cells in that block. That is, the
contents[] array of all the cells in that block (except the one in which the
value was found to be frozen, [i, j]) will not contain t after this.

If the contents[] array of any cell has been modified in this manner,
then the boolean indicator, change becomes true.

Since we need to check cells in various rows and columns when we are
checking a block, we need two for loops, one for rows and one for columns.
Here, k is used to specify the row in the block and l is used to specify the
column in the block.

public void Display(SudokuDisplay sd)

This method is used to display the board. It calls a method in the class
SudokuDisplay. We dont need to concern ourselves with the implementation
of this class.

public String toString()

This method is used to convert the Sudoku board to a string.

Class test

This class contains the main method.

4

Methods

static void pause(Scanner s)

This method is called from main. It ensures that the user can see the output
of each iteration of doRow, doColumn or doBlock. After each call to one of
these methods, the user has to press the return key. Only then will the main

method proceed.

main method

The objects of various classes are initialized. When the object sd of class
SudokuDisplay is created, the sudoku board panel gets displayed since that is
the functionality of the constructor of class SudokuDisplay. The user enters
the puzzle in this panel. pause(sc); is used, so that once the user has
entered the puzzle, he presses the return key. This signifies to the program
that it should start workingon the data. for (i=0; i<Sudoku.SIZE; i++)

for (j=0; j<Sudoku.SIZE; j++)

s.setCell(i, j, sd.getValue(i, j));

s.Display(sd);

The values entered by the user are given to the respective cell.
do {
change = false;

–
–
–
}while (change);

Continue performing the operations until the program is making progress,
ie, atleast one change in the contents[] array of atleast one cell occurs in
each loop.

for (i=0; i<Sudoku.SIZE; i++) {
pause(sc);

change |= s.doRow(i);

s.Display(sd);

System.out.println(‘‘After Row ’’ + i + ‘‘/n’’);

}
On each of the rows, doRow is called. ie, we check if any cell in that row

has been frozen, and change the contents[] array of the other cells of that
row.

The same is done by considering each column at a time, and each block
at a time.

5

Thus, in the main method, we keep modifying the contents[] array of
cells in each row, each column and the each block until, no more modifications
can be made based on the current data.

– End of program

Calling one constructor from another

Another constructor of the same class can be called using the keyword this.
E.g.

if (val > SIZE)

this ();

else

...

Here, the constructor without any arguments has been called.

Statement to change the flow of execution: break

There are statements which change the flow of execution. We have already
seen the use of return statement to return from any method. Let us now look
at another statement: break. You can use a break statement to terminate
a for, while, or do-while loop, as shown in the following example:

Scanner sc = ...

while (true){
int i = sc.nextInt ();

if (i < 0 || i > 20)

break;

System.out.println (fact (i));

}
Assume that the method which returns the factorial, fact (i) is already

written. Let us call this code 1. Now consider Code 2 as follows:
boolean done = false; while !done { int i = sc.nextInt (); if

(i <0 || i > 20) done = true; else System.out.println (fact (i));
}

The control follows a straight flow in code 2. This makes it easier to write
test cases and debug. Hence, it is difficult to make errors here.

In code 1, the break statement makes it a bit more difficult to understand
the flow of control. Hence, it is more difficult to write test cases for code 2.

However, in code 1, the compiler does not have to write any statements
to check if the condition of while (true) statement is true. But, in code 2,

6

the condition while (!done) needs to be checked everytime.
We can thus say that code 1 is more efficient, while code 2 is more user-

friendly.

7

