
Multi Dimensional Arrays

Storage Order: It is the way in which a multi-dimensional array is stored
in system memory. There are two major ways to do that

1) Row Major (most used in programming languages)
2) Column Major (only FOTRAN)

System memory is a linear address space. So multi-dimensional array
addresses must be converted to linear addresses before accessing in memory

Consider a 3D array a[m][n][p]. An element of this array can be addressed
by a[i][j][k].

In a row-major ordered system next element can be accessed at a[i][j][k+1]
while in a column-major ordered system next element can be accessed at
a[i+1][j][k]

Declaration: double matrix[][] = new double[n][m];

Declaration in a loop:

for(…)
 {
 double matrix[][] = new double[n][m];
 .
 .
 .
 }

 In every iteration we loose the array object and the reference variable
matrix. Every time a new reference variable is created.

Note: Declaring the same variable more than once is an error
normally. But the above loop it is not an error. The number of times the loop
runs is got at runtime

Another way of declaring in a loop:

 double matrix[][];

for(…)
 {
 matrix = new double[n][m];
 .
 .
 n = n+1;
 }

 Here the object assigned to matrix reference variable is changing
every time. Each time n and m can be different.

Note: Once the array declaration is done the value of n can be
changed independent of the previous declaration. All the statements are
individually evaluated.

Note: We cannot have two array variables of different size.

Only one arrow is active at a time. i.e., matrix variable stores

reference to one array at a time.

Matrix Multiplication:
 Multiplication of matrices results in a matrix. We have to calculate
n*m values. Where each value is dot product of vectors from given matrices

matrix

k=1

 Cij = Σ Aik * Bkj

 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 {
 c[i][j] = 0.0;
 for(k = 0; k < n; k++)
 c[i][j] += a[i][k] * b[k][j];
 }

More Operators

Bitwise AND (&) : performs bit-by-bit AND
 Example: 5 & 3 ≡ 101 & 011 = 001 ≡ 1

Usage: c = a & b;

Similarly, Bitwise OR (|) and Bitwise XOR(^). All these operators
don’t have side effects i.e., a and b are not changed while evaluating
the expression

Folding Operators: These operators have an operation and assignment
included in them
 Examples: +=, -=, *=, /=, %=

Read LHS value; Evaluate RHS value; do operation; Store in LHS
These operators have lowest precedence of all the operators.

j

i

C

= Xi

j

n

Rule of Thumb: Don’t use two disjoint side effects in a statement. Never
have two conflicting side effects in an expression.
 “c[i] = a[i] + b[i++]” is a badly formed expression.

 a=a!=b is a bad expression, to deal with such expression use
parenthesis. (a=(a!=b))

Sudoku Application

Data Structures:
 Cell[][] sudoku = new Cell[9][9];

 Cell should be able to store the list of digits (among 9) that can be
placed in that cell. This can be achieved by a boolean array of size 9.

 class Cell
 {
 private boolean[] contents;

 Cell() // default constructor
 {
 contents = new boolean[9];
 for(int i = 0; i < 9; i++)
 contents[i] = true; // empty cell should be able to
store any number
 } // end constructor

 Cell(Cell c)
 {
 contents = new boolean[9];
 for(int i = 0; i < 9; i++)
 contents[i] = c.contents[i]; // copy values
 } // end constructor

 Cell(int i)
 {
 if((i<1) || (i>Sudoku.N))
 <code same as in default constructor>

 else
 {
 contents = new boolean[9];
 contents[i-1] = true;
 }
 } //end constructor
 } // end class

