
String 
We will continue with the functionalities of String  
 
Return 
Type 

Method Function 

char charAt(int index) The char at a location in the string. 
int length() Number of characters in the string. 
int compareTo(String anotherString) Results in negative, zero or positive 

depending on the lexicographical 
ordering of the string and the 
argument anotherString using the 
rules of the default locale(explained 
below). 

int compareToIgnoreCase(String str) Compares two strings 
lexicographically, ignoring case 
differences. 

String concat(String str) Concatenates the specified string to 
the end of this string. 

int indexOf(int ch) Returns the index within this string 
of the first occurrence of the 
specified character. There are three 
other variants of indexOf 

String replace(char oldChar, 
char newChar) 

Returns a new string object 
resulting from replacing all 
occurrences of oldChar in this 
string with newChar. Uses the old 
string to return if no match found. 

String substring (int beginIndex, int 
endIndex) 

Returns a new string object that is a 
substring of this string, from 
beginIndex to (endIndex-1) 

String toLowerCase() Converts all of the characters in this 
String to lower case using the 
rules of the default locale. 

String toUpperCase()  Converts all of the characters in 
this String to upper case using the 
rules of the default locale. 

 
In the above operations, the original string is untouched and a new object is created and 
returned. 
In the above table compareTo, toLowerCase, toUpperCase uses the default “locale” for 
the operation. A Locale object represents a specific geographical, political, or cultural 
region. An operation that requires a Locale to perform its task is called locale-sensitive 
and uses the Locale to tailor information for the user. For example, displaying a number 
is a locale-sensitive operation--the number should be formatted according to the 
customs/conventions of the user's native country, region, or culture. In the above case, the 
notion of upper case letters and lower case letters are locale sensitive. 



 
 
Input-Output  
There is a notion of sequence while input and output in Java. The strings are output in the 
same sequence as given by the print statements. In Java, there are stream objects. The 
objects to be output, are put in to the output stream (can be considered like a buffer or 
pipe), and will be output in the same sequence. In a similar way, the input is put in to the 
input stream from the keyboard and the program can access the input stream to access the 
input data.  
For input output we use the System class, (which was used in System.out.print for 
output). The input output functionalities is done by 3 static stream variables in (for 
input), out and err (both for output). So for the command: 
 System.out.println: 

System is the class, out is the static stream object and println is the 
method.  

 
Contrary to System.out for output, System.in is not very direct. The input stream 
considers everything as a stream of characters. So we have to scan through the input and 
extract the various data types like integer, float, string, char etc, from it. Scanner does 
precisely this function. 
 
Scanner 
A Scanner breaks its input into tokens using a delimiter pattern, which by default 
matches whitespace. The resulting tokens may then be converted into values of different 
types using the various next methods. It scans through the argument, which can be an 
input stream (System.in), a string or a file. In total Scanner has 8 constructors apart 
from the default and copy constructor. We have to import the java.util package to use 
the scanner.  
For example 
     Scanner sc = new Scanner(System.in); //scanner object creation 
     int i = sc.nextInt(); //scans the next integer from the input. 
 
  
Return 
Type 

Method Function 

String next() Finds and returns the next complete token 
from this scanner. 

String nextLine() Advances this scanner past the current 
line and returns the input that was 
skipped. i.e., from the start position of the 
scanner till the newline 

boolean nextBoolean() Scans and returns the next token of the 
input into a boolean value and returns 
that value. Ignores the case.  

byte nextByte() Scans the next token of the input as a 
byte. The input should be small enough 
to fit in to a byte. 



int  nextInt() Scans and returns the next token of the 
input as an int. 

short nextShort() Scans and returns the next token of the 
input as a short. 

long nextLong() Scans and returns the next token of the 
input as a long. 

double nextDouble() Scans and returns the next token of the 
input as a double. 

float nextFloat() Scans and returns the next token of the 
input as a float. 

 
 
Apart from these methods, there are many other methods for scanner. There is a variant 
of the above method which checks the next token to be of various types. For eg. 
hasNextInt returns true if the next token in this scanner's input can be interpreted as an 
int value in the default radix using the nextInt() method. Similar methods exists for 
other data types. 


