
Lecture 15

Topics covered till this point:

I. Primitive types

- byte, short, int, long

- double, float

- boolean

- char

II. Constructed types

- string

III. Methods

- parameter passing

THE TERTIARY OPERATOR

We have studied unary operators (eg. ++, - (negation)), binary operators (eg. +, -, /, * ...). The ternary /

tertiary operator is an operator that takes three arguments / expressions and returns the result after

evaluating two expressions. It is also known as the conditional operator.

Syntax:

 <expression1> ? <expression 2> : <expression 3>

The conditional operator ? : uses the boolean value of one expression to decide which of two other

expressions should be evaluated. The conditional operator is syntactically right-associative (it groups

right-to-left), so that a?b:c?d:e?f:g means the same as a?b:(c?d:(e?f:g)). The conditional operator has

three operand expressions; ? appears between the first and second expressions, and : appears between

the second and third expressions. The first expression must be of type boolean or Boolean, or a compile-

time error occurs.

At run time, the first operand expression of the conditional expression is evaluated first; the resulting

boolean value is then used to choose either the second or the third operand expression:

 * If the value of the first operand is true, then the second operand expression is chosen.

 * If the value of the first operand is false, then the third operand expression is chosen.

The chosen operand expression is then evaluated.

Eg.,

Consider the following if-else construct:

if (a > 0)

 x = a;

else

 x = (-a);

The tertiary equivalent:

x = (a > 0) ? a : (-a);

CLASSES

Class is a programming construct used to group related fields(variables) and methods(functions). Classes

provide modularity and structure in a computer program. Code for a class should be relatively self-

contained. Collectively, the properties and methods defined by a class are called members.

For eg.

Consider the class for points in two dimensions:

class point {

 double x,y; // Fields / variables.

 double distanceFromO() { // distance from origin. (method)

 return Math.sqrt(x*x + y*y);

 }

}

Classes are examples of user defined types created from inbuilt ones. The point class builds on two

doubles (x,y).

Accessing a class variable

In order to access you use the dottend representation:

<class object>.<field / method>

For eg.

p.x; // Access the member variable x

p.distanceFromO(); // Call the distanceFromO function.

Classes used as members for other classes

Classes can be used as members in other classes also.

For eg. Consider the class triangle:

class triangle {

 point a,b,c; // Using earlier defined type point

 double getAverageDistance() { // Compute average distance.

 return ((a.distanceFromO() + b.distanceFromO() + c.distanceFromO()) / 3.0);

 }

}

