
Question1. What will be the output of the
following programs? Give reasons. [4, 7, 4]
No credit will be given if you do not give reasons
(even if your output is correct). Also, if the
reasoning is wrong then you will not get any
credit for just writing the correct output.

class q1a{
 public static void sumUp(int n, int total){
 int i;
 for (i=1; i<=n; i++){
 total = total +i;
 }
 }
 public static void main(String args[]){
 int n, total;
 n=10; //n can be initialized to any +ve number
 total=0;
 sumUp(n, total);
 System.out.println(total);
 }
}

class point{
 int p,q;
 point(int p, int q){
 this.p=p; this.q=q;
 }
 void printpoint(){
 System.out.println(this.p+" "+this.q);
 }
}

class q1b{
 public static void origin1(point p){
 p = new point(0,0);
 }
 public static void origin2(point p){
 p.p=15;
 p.q=20;
 }
 public static void main(String args[]){
 point q = new point(10,66);
 origin1(q);
 q.printpoint();
 origin2(q);
 q.printpoint();
 }
}

ass BankAccount{

e x){

t balance is: "+balance);

ass q1c{
tic void main(String args[]){

ount();

Answer:
10 66 1 mark if correct reason given
15 20 1 mark if correct reason given
Reason:
- Initially an object is created which is referred by q
and has instance variables p=10 and q=66.

- When method origin1() is invoked the parameter p
starts referring to the object referred by q. However,
p=new point(0,0) creates a new object (instance
variables p=0, q=0), and p starts referring to the new
object. Since, p is a local variable, any change to p is
not visible outside the method. Therefore, instance
variables of q do not change
- q.printpoint(), therefore, prints values of instance
variables of q which are 10 and 66 3 marks

- method origin2() is invoked and parameter p starts
referring to object referred by q. Through use of p
instance variables of object referred by q, are
modified. The change is done in the object itself.
Hence, instance variables of the object change to p=15
and q=20.
- q.printpoint() prints values of instance variables of q
which are now 15 and 20. 2 marks

Answer: 0 1 mark if correct reason
is given

Reason: Method sumUp does not return any
value. The change in the local variable total is
not visible outside the method. 3 marks

cl
 double balance;
 void deposit(doubl
 balance = balance + x;
 System.out.println("Curren
 }
}

cl
 public sta
 BankAccount myAccount;
 //myAccount = new BankAcc
 myAccount.deposit(10000);
 }
}

Answer: The program will not compile.
ror

s

1 mark if person writes program has er
2 marks if person writes compilation error
Reason: No object has been created OR
myAccount has not been initialized.

 2 mark

 3

uestion 2a. What will be the output of the

ns

lass q2a{
tic void printarray(double a[]){

 public static void main(String args[]){

5};

8;
x);

 }

uestion 2b. Here is a program to copy part of

ral to

ass q2b{
ic void printarray(double a[]){

/* copy n elements from b[] to a[]
s

ts

public static void copyarray(double a[], double b[], int ai,

ai) < n) //1 mark
o enough]");

nough n b[]");

 copy n elements from b to a. No checks are

ts(double a[], double b[], int

j=bi; i<ai+n; i++, j++) //2 marks

public static void main(String args[]){

 numbers are

ntln();

Q
following program? Justify your answer. [4]
No credit will be given if you do not give reaso
(even if your output is correct). Also, if the
reasoning is wrong then you will not get any
credit for just giving the correct output.

c
 public sta
 for (int i=0; i<a.length; i++)
 System.out.println(a[i]);
 }

 double x[] = {2.2, 4.4};
 double y[] = {1.1, 3.3, 5.
 y = x;
 x[0]=8.
 printarray(
 printarray(y);

}

Q
an array to another array. Fill in the missing code
so that the program achieves the objective.
Remember that the methods have to be gene
work for all correct values of the parameters. [6]

cl
 public stat
 for (int i=0; i<a.length; i++)
 System.out.println(a[i]);
 }

 * store elements from a[ai] onward
 * pick elements from b[bi] onwards
 * if a[] does not have enough slots
 * or b[] does not have enough elemen
 * then no copying is done and appropriate
 * error message is flashed */

int bi, int n){
 if ((a.length-
 System.out.println("N t slots in a[
 else if ((b.length-bi) < n) //1 mark

Answer:
½ mark for each output

eason: 2 marks for the reason

gnment y=x makes y refer to the

ay

 {8.8, 4.4}

 System.out.println("Not e elements i
 else copyelements(a, b, ai, bi, n); //1 mark 8.8

4.4 if reasoning is correct
8.8
4.4

 }

/*
 required in this method */

R
- Initially x={2.2, 4.4} and y={1.1, 3.3,

 public static void copyelemen
ai, int bi, int n){
 int i, j;
 for (i=ai, 5.5}

- Assi
same object as being referred by x.
- Therefore, both x and y refer to arr
whose elements are {2.2, 4.4}
- x[0]=8.8 changes this array to
- printarray(x) and printarray(y) both print
the elements of the same array.

 a[i] = b[j]; //1 mark
 }

 double x[] = {2.2, 4.4, 6.6, 8.8, 10.1};
 double y[] = {1.1, 3.3, 5.5, 7.7};
 copyarray(x,y,1,1,2); //only non –ve
 //passed as arguments
 printarray(x);
 System.out.pri
 printarray(y);
 }
}

 4

Question 3a. Here is a program written to
transpose a square matrix. We do not create a
new matrix; rather rows and columns are
swapped in the same matrix. Complete the
method transpose to achieve the goal. [5]

class q3a{
 public static void transpose(int a[][]){
 for (int i=0; i<a.length; i++) //2 marks
 for (int j=i; j<a.length; j++){ //2 marks
 int t = a[i][j]; //1 mark for swapping
 a[i][j] = a[j][i];
 a[j][i] = t;
 }
 }

 public static void main(String args[]) {
 int table[][] = {{1,2,3},{4,5,6},{7,8,9}};
 transpose(table);
 }
}

Only 1 mark if a new array has been created

2½ marks if the inner loop starts from 0 but everything
else is correct

Question 3b. Consider the program below. This
program takes a 2-D array, adds elements of each
row and returns a 1-D array whose elements are
sum of each row.

For example, if
table[][]={{1,2,3},{4,5},{3,5,6,9}}
then it return an array {6, 9, 23}

Complete the program below to achieve this
objective. [5]

class q3b{
 public static double[] addUpRows(double a[][]){
 double SumA[] = new double[a.length];
 for (int i=0; i<a.length; i++)
 for (int j=0; j<a[i].length; j++)
 SumA[i] = SumA[i] + a[i][j];
 return SumA;
 }

 public static void main(String args[]) {
 double table[][] = {{1, 2, 3}, {4, 5}, {3, 5, 6, 9}};
 double SumofRows[] = addUpRows(table);
 }
}

//1 mark for each line

Question 4. Consider the program below that “adds one” to a single lowercase word stored in a string:
starting at the rightmost character, the character is incremented (a becomes b etc.). If the character is z
then it is transformed to a, and a “carry” causes the next character to the left to be incremented. If it is
necessary to “carry” past the leftmost character then the string is prepended with an a.

For example string:
“abc” transforms to “abd”
“abz” transforms to “aca”
“zzz” transforms to “aaaa”

Briefly describe the method and complete the program below to achieve this goal. [10]

 2 marks for description
class q4{
 public static String addone(String s){
 String t = "";
 char ch;
 int carry = 1; 1 mark for initializations
 for (int i=s.length()-1; i>=0; i--){ 1 mark for loop statement
 ch = (char)(s.charAt(i)+carry); 2 marks for update and typecast
 if (ch > 'z') {carry=1; ch='a';} 1 mark for if statement
 else carry=0;
 t = ch + t; 1 mark for updating string t
 }
 if (carry==1) t = 'a'+ t; 1 mark
 return t; 1 mark for return and type name in header
 }

//DO NOT change anything in main
 public static void main(String args[]) {
 String a = "yzzzzz";
 System.out.println(addone(a));
 }
}

 6

Question 5. We have discussed bubble sort method in the class. Another important sorting method is
selection sort. It makes n-1 passes through a sequence of n elements, each time moving the largest among
the remaining unsorted elements into its correct position.
Given below is structure of a selection sort method. Complete the program. Trace the execution of the
program by showing array after each swap. [15]

class q5{
 public static void sort(int a[]){
 //traverse the array repeatedly, every time
 //reducing number of elements to be sorted by one
 for (int i=a.length-1; i>0; i--){
 int m=0;
 //find index of the max element in the remaining array
 for (int j=1; j<=i; j++)
 if (a[j]>a[m]) m=j;
 //swap max and last element
 //thereby, moving the max in the last position
 swap(a,i,m);
 }
 }
 public static void swap(int a[], int i, int j){
 int t = a[i];
 a[i] = a[j];
 a[j] = t;
 }
 public static void main(String args[]) {
 int a[] = {66, 33, 99, 88, 44, 55, 22, 77};
 sort(a);
 }
}

Original array: 66 33 99 88 44 55 22 77
Swap 99 and 77: 66 33 77 88 44 55 22 99
Swap 88 and 22: 66 33 77 22 44 55 88 99
Swap 77 and 55: 66 33 55 22 44 77 88 99
Swap 66 and 44: 44 33 55 22 66 77 88 99
Swap 55 and 22: 44 33 22 55 66 77 88 99
Swap 44 and 22: 22 33 44 55 66 77 88 99
Nothing to be swapped: 22 33 44 55 66 77 88 99

• NO PENALTY if output is in descending order OR student finds min element instead of max element
• ZERO marks if the program uses more than n swaps
• 12 marks for the program, and 3 marks for the trace only if program is correct
• Deduct 7 marks if the program does not take care of duplicate numbers
• Deduct 4 marks if the program does not take care of negative numbers
• Deduct 3 marks for each mistake but if there are more than 3 mistakes then student gets 5 marks if the general

conditions are correct

