******************** 

                                                                                           

 

                                                                                BILLIARDS   

                                                                        *************************   

                                                                                A  Game    Of    Graphics    &    Skill   ! 



                                                                                  innovation  of ......                                                                                               

PRADEEP  KUMAR  SONKAR
Y2268
pksonkar
PRANJALYA  PARTH  LATHE
Y2272
pplathe
UTTAM  KUMAR  TRIPATHI
Y2405
uttam
       


                             We  are  greatly  fascinated  by  this  great  game  of  billiards  which  is  one  of  the  oldest  &  the  best skill  games  of  the  world  .
                              Played  in  all  the  corners  of  the  world &  enjoyed  by  millions  of  people  all  across  the  world,this  theme  was  constantly  at
                              the  back  of  our  mind  while  we  were  planning   our  project  for  ESC101  course .I  am a  great  admirer  of  this  master  game
                             &  have  been  in  constant  touch  with  this  game  for  last  few  years.All this  lead  to  building  of  a  great  super-structure  of  
                              ideas , thoughts & sheer  imagination  on a solid  foundation.


                                                                                      HOPE  YOU  ENJOY  OUR  CREATION   ! ! !      



    THE  KNOW  HOW  ABOUT  THE  GAME :-

                             The  game  consists  of  three  balls  (coloured : white , yellow & red)   . It is  played  with  the  help  of  a  cue  on  a  six  pocketed  
                              green  carpet  table   .The  game  is  all  about  manipulation  of  2-D  collisions  at  different  angles,  angular  and  linear  momentum
                             conservations  and  your  sheer  grit  and  concentration.                                                                                     

                                 
                                                                                                                                                            
     
                          The  game  starts  with  the  red  ball  placed  on  the  black  dot  at  one  end  of  the  table.  The  player  who  starts  the  game  places  the
                           ball  on  the  semi-circle   present  at  the  opposite   end   and  takes  his  shot  aiming  at  the  red  ball.  Untill  unless  the  second  user
                           gets his  chance  with  the  yellow  ball, the  game  proceeds  with  only  two  balls  on  the  table.  Each   player  has  to  aim  other  balls
                           using  his  own  ball , if  he  hits  the  other  player's  ball  then  he  will  be  left  with  only  two  balls  to  play  with.

      TERMS  RELATED  WITH  BILLIARDS-   


                                                                                                    POINTS-TALLY                  

                                                 

CANNON
3          
KNOFF
2
POD
1





                                                                





  SAMPLE  INPUT/OUTPUT-


 Mass = M
 Initial velocity ball 1 = Vi1
 Initial velocity ball 2 = Vi2
 Final velocity ball 1 = Vf1
 Final velocity ball 2 = Vf2
Final trajectory ball 1 = Zf1
 Final trajectory ball 2 = Zf2

 In the simplest collision scenario, a moving ball strikes a stationary ball straight on. In this situation, the system has a total momentum equal to the momentum of the moving ball. Assuming that energy is conserved in the collision, we can solve for the final velocities using the conservation of momentum.


 P = MV
 Pi = Pf
 MVi1 = MVf1 + MVf2
 Vi1 = Vf1 + Vf2
 (Vi1 Vf1) = Vf2

 (1/2)M(Vi1)2 = (1/2)M(Vf1)2 + (1/2)M(Vf2)2
 (Vi1)2 = (Vf1)2 + (Vf2)2
 (Vi1 + Vf1)(Vi1 Vf1) = (Vf2)2
 
(Vi1 + Vf1) = (Vf2) = (Vi1 Vf1)

Vf1 = 0
 Vf2 = Vi1

This leaves us with an interesting conclusion. When a moving ball hits a stationary ball, all the momentum is transferred to the stationary ball. The shooting ball comes to a rest and the target ball continues on the path of the first ball. This phenomenon is only true when the masses are equal and energy is conserved in the collision.

When both balls are moving, we need to solve the system again, substituting the velocity of the second ball for Vi2.



Pi = MVi1 + MVi2
Pi = Pf
MVi1 + MVi2 = MVf1 + MVf2
Vi1 + Vi2 = Vf1 + Vf2
Vi1 - Vf1 = Vf2 - Vi2

(1/2)M(Vi1)2 + (1/2)M(Vi1)2 = (1/2)M(Vf1)2 + (1/2)M(Vf2)2
(Vi1)2 + (Vi1)2 = (Vf1)2 + (Vf2)2
(Vi1)2 - (Vf1)2 = (Vf2) 2 - (Vi2)2
(Vi1 + Vf1)(Vi1 - Vf1) = (Vf2 + Vi2)(Vf2 - Vi2)

(Vi1 + Vf1) = (Vf2 + Vi2)
 
Now we have two expressions to find two unknown variables, which are the final velocities of the balls.
 Vi1 + Vf1 = Vf2 + Vi2
 Vi1 - Vf1 = Vf2 - Vi2

The problem becomes more complex if the colliding ball does not strike the stationary ball head-on, but rather at an angle. To simplify the problem, we can say that the moving ball is traveling along the x-axis. In this situation, we can set up three equations. First, momentum in the x-direction must be conserved. Second, momentum in the y-direction must be conserved. Lastly, we can assume energy is conserved in the collision due to the unique rigid properties of billiard balls.


Since only one ball is moving, the momentum is defined as MVi1. After the collision, the x-components of the momentums of each ball must equal the initial momentum of the first ball. Because the first ball is initially traveling in the x-direction, there is no component to the momentum in the y-direction. Therefore, the sum of the y-components of momentum must equal 0 after the collision. Lastly, energy is conserved. The kinetic energy of the first ball before the collision must equal the sum of the energies after the collision. A negligible amount of energy is lost to air vibrations, and can be ignored. There are four unknown values that we need for after the collision: the velocity and deflection angle of each ball.

MVi1 = MVf1cos(Zf1) + MVf2cos(Zf2)
 Vi1 = Vf1cos(Zf1) + Vf2cos(Zf2)

MVf1sin(Zf1) + MVf2sin(Zf2) = 0
 Vf1sin(Zf1) + Vf2sin(Zf2) = 0

(1/2)M(Vi1)2 = (1/2)M(Vf1)2 + (1/2)M(Vf2)2
 (Vi1)2 = (Vf1)2 + (Vf2)2



There are only three equations, which only allows us to solve for three of the variables. Fortunately, we can find one of the variables independently. The only accelerating force acting on the second ball is generated by the collision with the first ball. Newton's first law maintains that that ball can only travel in the direction of the force applied. We can find this direction geometrically by tracing a line between the centers of the two balls. The target ball must then follow this line. Therefore, we can solve for Zf2 independently. This leaves us with three equations with three unknown variables, which is a solvable problem.

Vf1 = (Vi1 - Vf2cos(Zf2))/(cos(Zf1))
 Vf2 = (tan(Zf1)Vi1)/(cos(Zf2)tan(Zf1) + sin(Zf2))

 Vf22 = Vi12 - Vf12

 (tan(Zf1)Vi1)/(cos(Zf2)tan(Zf1) + sin(Zf2))2 =
Vi12 - (Vi1/cos(Zf1) - [cos(Zf2)tan(Zf1)Vi1 /( cos(Zf1) cos(Zf2)tan(Zf1) + sin(Zf2) )]2
The only unknown variable in this equation is Zf1. We can now plug the value of Zf2 back into the expressions for Vf1 and Vf2, and solve the entire system.



The collision becomes even more complex when both balls are moving before the collision. This problem can be solved, however, by applying a different reference frame. We can redefine both balls in a moving coordinate system. Newton's laws still remain true as long as the coordinate system, or "reference frame", does not accelerate. Let us now define the velocity of the reference frame. To simplify the problem, we define the velocity of the reference frame to have the same magnitude and direction as the target ball. To define the balls in the new reference frame we merely subtract the velocity vector of the target ball from each of the balls in the system.



In the new reference frame, it now appears as if the target ball is stationary, and we can calculate the collision as before. After we find the correct final velocity and deflection angle for each ball, we need to transfer the balls back the original reference frame. We do this by adding the velocity vector of the reference frame back to each of the balls.


PARAMETERS  GIVEN  BY  THE  USER-

  1. VELOCITY
  2. ANGLE  OF  PROJECTION
  3. FRICTION  COEFFICIENT
  4. MOMENT  OF  INERTIA  OF  THE  BALLS 


  REFERENCES  &&  LINKS :-

 
                            

links of project partners:-

  uttam kumar tripathi                                                    pradeep kumar sonkar                 pranjalya parth lathe