B.Tech. (Computer Science and Engineering)

<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>COURSE</th>
<th>FIRST</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
<th>FIFTH</th>
<th>SIXTH</th>
<th>SEVENTH</th>
<th>EIGHTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHM101</td>
<td>TA101</td>
<td>MTH203</td>
<td>HSS-1-2</td>
<td>CS330</td>
<td>CS335</td>
<td>CS498</td>
<td>CS499</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHY101</td>
<td>PHY103</td>
<td>PHM201</td>
<td>TA201</td>
<td>CS340</td>
<td>CS345</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHY102</td>
<td>MTH102</td>
<td>CS220</td>
<td>CS201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MTH101</td>
<td>ESC102</td>
<td>ESC-1</td>
<td>CS355</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HSS-1-1/</td>
<td>CS100</td>
<td>ESO211</td>
<td>OE-1</td>
<td>CS350,</td>
<td>CS425,</td>
<td>CS455</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENG112N</td>
<td>PE102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ESC101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to above, the student must complete the following credits:

- **DE**: 12 Credits
- **OE**: 20 Credits
- **HSS-2**: 08 Credits
- **SE**: 08 Credits

B.Tech. (Electrical Engineering)

<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>COURSE</th>
<th>FIRST</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
<th>FIFTH</th>
<th>SIXTH</th>
<th>SEVENTH</th>
<th>EIGHTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PHY102</td>
<td>PHY101</td>
<td>MTH203</td>
<td>HSS-1-2</td>
<td>EE320</td>
<td>EE340</td>
<td>EE491</td>
<td>EE492</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MTH101</td>
<td>CHM101</td>
<td>CHM201</td>
<td>ESO209</td>
<td>EE330</td>
<td>EE381</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA101</td>
<td>MTH102</td>
<td>TA201</td>
<td>ESO210</td>
<td>EE370</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ESC102</td>
<td>ESC101</td>
<td>EE200</td>
<td>EE210</td>
<td>EE380</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE101</td>
<td>EE100</td>
<td>ESO202/</td>
<td>ESO250</td>
<td>EE301</td>
<td>EE311</td>
<td>EE321</td>
<td>EE360</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HSS-1-1/</td>
<td>PHY103</td>
<td>ESO211/</td>
<td>ESO214/</td>
<td>EE301</td>
<td>EE311</td>
<td>EE321</td>
<td>EE360</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENG112N</td>
<td>PE102</td>
<td>ESO218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to above, the student must complete the following credits:

- **DE**: 12 Credits
- **OE**: 16 Credits
- **HSS-2**: 08 Credits
- **SE**: 08 Credits
CORE COURSES

CHM 101 CHEMISTRY LABORATORY
L-T-P-D-[C]
0-1-3-0-[2]

CHM 201 CHEMISTRY
L-T-P-D-[C]
3-1-0-1-[4]
Physical Principles: Experimental methods of structure determination, Systems at finite temperature, Molecular reaction dynamics. Chemistry of Molecules: Introduction to molecules, Principles and applications of Transition Metal ion chemistry, Organometallic chemistry, Green chemistry, Structure of organic molecules, Synthesis of organic molecules, Photochemistry of organic and biomolecules, Chemistry of life processes, Biotechnology and Biomedical applications.

ESC 101 FUNDAMENTALS OF COMPUTING
L-T-P-D-[C]
3-1-3-0-[5]
introduction to Linux, the programming environment, write and execute the first program, introduction to the object oriented (OO) approach-classes, objects, state through member variables, interface through member functions/methods. Give many examples of (OO) approaches to problem solving in science and engineering, Procedural programming, Introduction to basic input-output - Assignment and expressions, Control: if, if-then-else, case, go, continue, break, Loops, iterators, enumerations examples form algebraic equation solving, Function as a procedural abstraction, argument passing, references, Basic containers: Array, Vector, examples from solving systems of linear equations, Recursion, Object-oriented aspects, Programming using classes and objects, Scope, encapsulation, visibility, Inheritance, subtypes, static-dynamic binding, Primitive types, classes as types, wrapper classes for primitive types Java i/o system, More container classes-list, hashtable, set, sortedset, algorithms which use these classes, Interfaces.
ESC 102
L-T-P-D-[C]
3-1-3-1-[5]

INTRODUCTION TO ELECTRONICS

ESO 202
L-T-P-D-[C]
3-1-0-1-[4]

THERMODYNAMICS

Thermodynamic Properties of Fluids: Pure substance. Phase, Simple compressible substance, Ideal gas Equation of state, van der Waals Equation of State; Law of corresponding states, Compressibility chart, Pressure-volume; Temperature-volume and Phase diagrams; Mollier diagram and Steam tables.

Thermodynamic Potentials; Maxwell relations; Available energy, Availability; Second law efficiency. Thermodynamic relations, Jacobian methods, Clapeyron and Kirchoff equations, Phase rule.

MECHANICS OF SOLIDS, 3-1-0-1-4

Free body diagram, Modelling of supports, Conditions for Equilibrium, Friction Force-deformation relationship and geometric compatibility (for small deformations) with illustrations through simple problems on axially loaded members and thin-walled pressure vessels, Force analysis (axial force, shear force, bending moment, and twisting moment diagrams) of slender members (singularity functions not to be used), Concept of stress at a point, Transformation of stresses at a point, Principal stresses, Mohr’s circle (only for plane stress case), Displacement field, Concept of strain at a point, Transformation of strain at a point, Principal strains, Mohr’s circle (only for plane strain case), Strain Rosette, Modelling of problem as a plane stress or plane strain problem, Discussion of experimental results on 1-D material behaviour, Concepts of elasticity, plasticity, strain-hardening, failure (fracture/yielding), idealization of 1-D stress-strain curve, Concepts of isotropy, orthotropy, anisotropy, Generalized Hooke’s law
(without and with thermal strains), Complete equations of elasticity, Torsion of circular shafts and thin-walled tubes (plastic analysis and rectangular shafts not to be discussed), Bending of beams with symmetric cross-section (normal and shear stresses) (shear centre and plastic analysis not to be discussed), Combined stresses, Yield criteria, Deflection due to bending, Integration of the moment-curvature relationship for simple boundary conditions, Superposition principle (singularity functions not to be used), Concepts of strain energy and complementary strain energy for simple structural elements (those under axial load, shear force, bending moment, and torsion), Castiglano’s theorems for deflection analysis and indeterminate problems, Concept of elastic instability, Introduction to column buckling, Euler’s formula (post-buckling behaviour not to be covered)

ESO 208

L-T-P-D-[C]

2-1-2-0-[4]

EARTH SCIENCE

EARTH AS PLANET IN THE SOLAR SYSTEM: Introduction; Earth in relation to moon, meteorites and other members of the solar system; Comparison of internal structures; origin;

ATMOSPHERE AND OCEANS: Origin and evolution; Atmosphere-ocean interaction; Air pollution, Green house effect, Ozone layer; Ocean currents and waves

SOLID EARTH AND EARTH MATERIALS: Interior of the earth; Magmas, volcanoes and igneous rocks; Sediments and sedimentary rocks; Metamorphism and metamorphic rocks; Rock forming minerals; Crystal structure; Crystallographic methods; Optical properties; Radiometric age; Geological time scale.

PROCESSES THAT SHAPE THE EARTH’S SURFACE: Geomorphic processes and landforms; Weathering and soils; Streams and drainage pattern; Ground water, wind; Glacier; Shore processes; Impact of human activity; Natural hazards.

THE EVOLVING EARTH: Crustal deformation; Geologic structures and their representation; Applications of remote sensing; Isostasy; Continental drift; Sea-floor spreading; Paleo-magnetism, Plate tectonics; MINERAL RESOURCES: Ore-forming processes; Metallic and non-metallic deposits; Fossil fuels; Mineral resources of the sea; Geology of India and distribution of economic mineral deposits; Tutorials, Laboratory Sessions.

ESO 209

L-T-P-D-[C]

3-1-0-1-[4]

PROBABILITY AND STATISTICS, 3-1-0-1-4

Prereq. MTH 101

Probability, Axiomatic Definition, Properties, Conditional probability, Bayes rule and Independence of Events, Random variables, Distribution function, Probability mass and density functions, Expectation, Moments, Moment generating function,
Chebyshev’s inequality; Special distributions: Bernoulli, Binomial, Geometric, Negative Binomial, Hypergeometric, Poisson, Uniform, Exponential, Gamma, Normal, Joint Distributions, Marginal and Conditional Distributions, Moments, Independence of random variables, Covariance, Correlation, Functions of random variables, Weak law of large numbers, P.levy’s Central limit theorem (i.i.d. finite variance case), Normal and Poisson approximations to Binomial; STATISTICS:

Introduction: Population, sample, parameters; **Point Estimation:** Method of moments, MLE, Unbiasedness, Consistency, Comparing two estimators (Relative MSE), Confidence Interval, Estimation for mean, difference of means, variance, proportions. Sample size problem. **Tests of Hypotheses:** N-P Lemma, examples of MP and UMP tests, p-value, Likelihood ratio test, Tests for means, variance, two sample problems, Test for proportions, Relation between confidence intervals and tests of hypotheses, Chi-Square goodness of fit tests, contingency tables, SPRT

Regression Problem: Scatter diagram, Simple linear regression, Least squares estimation; Tests for slope and correlation, prediction problem, Graphical residual analysis, Q-Q plot to test for normality of residuals, Multiple Regression; Analysis of Variance: Completely randomised design and Randomised block design, Quality Control, Shewhart control charts and Cusum charts

ESO 210

INTRODUCTION TO ELECTRICAL ENGINEERING

ESO 211

DATA STRUCTURES AND ALGORITHMS-I

Order Analysis: Objectives of time analysis of algorithms; Big-oh and Theta notations, Data Structures:- Arrays, Linked lists, Stacks (example: expression evaluation), Binary search trees, Red-Black trees, Hash tables, Sorting and Divide and Conquer Strategy: - Merge-sort; D-and-C with Matrix Multiplication as another example, Quick-sort with average case analysis, Heaps and heap-sort, Lower bound on comparison-based sorting and Counting sort, Radix sort, B-trees, Dynamic Programming: methodology and examples (Fibonacci numbers, matrix sequence, multiplication, longest common subsequence, convex polygon triangulation), Greedy Method: Methodology, examples (lecture scheduling, process scheduling) and comparison with DP (more examples to come later in graph algorithms), Graph Algorithms:- Basics of graphs and their representations,
BFS, DFS, Topological sorting, Minimum spanning trees (Kruskal and Prim's algorithms and brief discussions of disjoint set and Fibonacci heap data structures), Shortest Paths (Dijkstra, Bellman-Ford, Floyd-Warshall).

ESO 212 FLUID MECHANICS AND RATE PROCESSES

FLUID MECHANICS: Introduction to fluids, Fluid statics; pressure as a scalar, manometry, forces on submerged surfaces (NO moments NOR center of pressure), Description of flows; field approach, Euler acceleration formula, streamlines, streaklines, etc., Reynolds' transport theorem Conservation of mass; stream function, Linear (NOT angular) Momentum balance, Navier-Stokes' (NS) equation; *elementary* derivation; application; Poiseuille flow, Couette flow, Energy equation-Bernoulli equation, applications including flow measurement (Pitot tube, Orifice meters); Pipe flows and losses in fittings; Similitude and modelling: using non-dimensionalization of N-S equations and boundary conditions, simplifications for cases without free surfaces and without cavitation (scale factor approach should NOT be done); High Re flow: Prandtl's approximation; basic inviscid flow; need for boundary layer; Magnus effect (mathematical derivations be avoided), Boundary layers-elementary results for flat plates. Separation, flow past immersed bodies (bluff, streamlined); physics of ball-games (qualitative)

Heat Transfer: Introduction, rate law and conservation law, Conduction equation; non-dimensionalization, various approximations, Steady state conduction-concept of resistances in series and of critical thickness of insulation, Unsteady conduction; significance of Biot and Fourier numbers, Heissler charts; Low Bi case; penetration depth, Essential nature of convection: transpiration cooling; writing energy equation without dissipation and pressure terms; one example (heat transfer to fluid flowing in a tube); non-dimensionalization, Nusselt number and correlations; MASS TRANSFER: Simple ideas of mass transfer; definitions (mass basis only), similarity with heat transfer. Use of steady ‘conduction’ concepts to solve simple steady cases in dilute solutions as well as in stationary solids, only.

Boundary conditions, Illustrative example: One example involving all three transport phenomena should be discussed, possibly from the bio-world or from microelectronics processing.

ESO 214 Nature and Properties of Materials

Examples of materials highlighting Structure-Processing-Property-performance relations. 14 space lattices, unit cells, cubic and HCP structures, Miller indices, Packing, interstitials, different ceramic structures; Non-crystalline/nanocrystalline materials-definitions, concept of Tg, local order, different polymer structures.
Structure determination using X-ray diffraction (Bragg’s diffraction and structure factor for cubic lattices); Point defects, edge and screw dislocations-their notation and concepts, energy of a dislocation, stacking fault, grains and grain boundaries, bulk defects;

PHASE EVOLUTION: Definition of diffusivity, concept of activation energy, examples of diffusion process; Definition of a phase, phase rule, unary and binary (eutectic, eutectic with terminal solid solutions) systems and examples, phase diagrams of important metal and ceramic systems, Nucleation and growth (homogeneous and heterogeneous), Introduction to TTT curves, examples of various transformations;

MECHANICAL BEHAVIOUR: Measures of mechanical response (fundamental measurable mechanical properties), engineering and true stress-true strain response, concept of yield point and Elastic modulus (composite materials) viscoelasticity, fracture toughness, stress intensity factor, fracture energy, comparison of these properties for different engineering materials.

Deformation of single and polycrystalline materials, slip systems, critical resolved shear stress, mechanisms of slip and twinning; Fatigue and creep properties of materials with suitable examples, Strengthening mechanisms, Fracture in ductile and brittle (Griffith’s Theory) solids, ductile to brittle transition,

ELECTRONIC PROPERTIES: Drude theory of metals, free electron theory (density of states, Fermi energy, Fermi-Dirac statistics, band theory of solids, existence of metals and insulators, Brillouin zones), Semiconductors (structures of elements and compounds), equilibrium properties of semiconductors, conductivity as a function of temperature, measurement of band gap, doping, law of mass action, Hall effect, carrier concentration of mobility of non-generate semiconductors, Excess carrier generation, optical properties of semiconductors, concept of lifetime, I-V characteristics of p-n junction and their applications as LEDs, lasers and solar cells, Introduction to semiconductor crystal growth and processing modern methods of exipitaxy (brief introduction to quantum wells and superlattices, if time permits), Dia-, para-ferro- and ferri magnetism; soft/hard magnetic materials.

Dielectric and ferroelectric materials (BaTiO3 as an example); linear and non-linear behaviour.

ESO 216 SIGNAL PROCESSING AND INSTRUMENTATION

Prereq. ESc 101

Physical quantities and their measurement. Different grades of measurability, scales and scale-invariant properties. Errors, precision (resolution), accuracy
and calibration standards. Study of quantities; mechanical (position, force, velocity, acceleration (electrical voltage, current, position, frequency, time), chemical (flow, pressure, temperature, pH), psychophysical (brightness, loudness) etc., Sensors (e.g. strain guages, pH electrodes, photodiodes, accelerometers, etc), actuators (eg. Relays, solenoids, valves, stepper motors), sources (eg. Voltage, current, light sources), Introduction to the study of signals and their processing. Familiarization and use of Virtual Instrumentation software, Signals and noise; signal representation and noise characterisation. Analog and digital signals; signal sampling and quantisation. The Fourier series and the Fourier Transform; magnitude and phase spectra; the DFT; Signal and noise filtering; noise reduction techniques; windowing, boxcar integration, lock-in amplifiers, multipoint averaging; Signal conversion: A/D and D/A conversion techniques. Multiplexing; Basic instrumentation: meters, guages, milli and micro voltimeters. Various bridges for impedance and frequency measurement. Examples of advanced instrumentation: oscilloscopes and spectrum analyzers. NMR.

Data Acquisition and computer control. Interfacing with microcontrollers and personal computers. Virtual (Software) instrumentation.

ESO 218 COMPUTATIONAL METHODS IN ENGINEERING
L-T-P-D-[C] 3-1-0-0-[4]

MTH 101
MATHMATICS - I
Real numbers; Sequences; Series; Power series, Limit, Continuity; Differentiability, Mean value theorems and applications; Linear Approximation, Newton and Picard method; Taylor’s theorem (one variable), Approximation by polynomials Critical points, convexity, Curve tracing; Riemann Integral; fundamental theorems of integral calculus Improper integrals; Trapezoidal and Simpson’s rule; error bounds; Space coordinates, lines and planes, Polar coordinates, Graphs of polar equations, Cylinders, Quadric surfaces; Volume, Area, length; Continuity, Differentiability of vector functions, arc length, Curvature, torsion, Serret-Frenet formulas, Functions of two or more variables, partial derivatives. Statement only, of Taylor’s theorem and criteria for maxima/minima/saddle points; Double, triple integrals, Jacobians; Surfaces, integrals, Vector Calculus, Green, Gauss, Stokes Theorems

MTH 102
MATHMATICS - II
Prereq. : MTH 101
Matrices; Matrix Operations (Addition, Scalar Multiplication, Multiplication, Transpose, Adjoint) and their properties; Special types of matrices (Null, Identity, Diagonal, Triangular, Symmetric, Skew-Symmetric, Hermitian, Skew-Hermitian, Orthogonal, Unitary, Normal), Solution of the matrix EquationAx=b; Row-reduced Echelon Form; Determinants and their properties, Vector Space R^n (R); Subspaces; Linear Dependence / Independence; Basis; Standard Basis of R^n; Dimension; Co-ordinates with respect to a basis; Complementary Subspaces; Standard Inner product; Norm; Gram-Schmidt Orthogonalisation Process; Generalisation to the vector space C^n (C), Linear Transformation from R^n to R^m (motivation, X - AX); Image of a basis identifies the linear transformation; Range Space and Rank; Null Space and Nullity; Matrix Representation of a linear transformation; Structure of the solutions of the matrix equation Ax = b, Linear Operators on R^n and their representation as square matrices; Similar Matrices and linear operators; Invertible linear operators; Inverse of a non-singular matrix; Cramer’s method to solve the matrix equation Ax=b, Eigenvalues and eigenvectors of a linear operator; Characteristic Equation; Bounds on eigenvalues; Diagonalisability of a linear operator; Properties of eigenvalues and eigenvectors of Hermitian, skew-Hermitian, Unitary, and Normal matrices (including Symmetric, Skew-Symmetric, and Orthogonal matrices), Implication of diagonalisability of the matrix A + A^t in the real Quadratic form X' AX; Positive Definite and Semi-Positive Definite Matrices, Complex Numbers, geometric representation, powers and roots of complex numbers, Functions of a complex variable, Analytic functions, Cauchy-Riemann equations; elementary functions, Conformal mapping (for linear transformation) Contours and contour integration, Cauchy’s theorem, Cauchy integral formula, Power Series, term by term differentiation, Taylor series, Laurent series, Zeros, singularities, poles, essential singularities, Residue theorem, Evaluation of real integrals and improper integrals.
MTH 203
MATHEMATICS - III
Prereq. : MTH 102

PHY 101
PHYSICS LABORATORY

- Introduction to Error Analysis and Graph Drawing; Spring Oscillation Apparatus; Trajectory of a Projectile on an inclined plane; Moment of Inertia of a bicycle wheel; Bar Pendulum; Torsional Pendulum; Coupled Pendulum; Study of collisions on an Air Track; Gyroscope; Current Balance; Measurement of Capacitance using Galvanometer; Charging of a plate capacitor; Electromagnetic Induction; Prism Spectrometer; Fraunhofer Diffraction using He-Ne laser; Magnetic Field in Helmholtz Coil; Resonance in Electrical Circuits.

PHY 102
PHYSICS-I

- Coordinate Systems, elements of vector algebra in plane polar, cylindrical, spherical polar coordinate systems, Dimensional Analysis; Solutions for 1 dimensional equation of motion in various forms, Frames of reference, relative velocity and accelerations; Newton’s laws and applications (to include friction, constraint equations, rough pulleys), Line integrals, gradient, curl, conservative forces, potential, Work-Energy theorems, Energy diagrams; Conservation of linear momentum and collisions, variable mass problems; Central forces, Gravitation, Kepler’s law, hyperbolic, elliptic and parabolic orbits, Forced Oscillations, damping, resonance; Waves: Motion in Non-Inertial frames, centrifugal
Vector Calculus; Electrostatics; Gauss law and applications, electrostatic potential and Curl of E; Work and energy in electrostatics, Laplace’s Equation and (first) uniqueness theorem, method of images, multipoles (introduction), force and torque on dipoles; Polarization, bound charges, Electric displacement and boundary conditions, Linear dielectrics, force on dielectrics. Motion of charges in electric & magnetic fields; Magneto-statics: Current Density, Curl and divergence of B, Ampere’s law and applications, magnetization, bound currents and bound pole densities, Magnetic field H, Magnetic susceptibility, Ferro, para and diamagnetism, Boundary conditions on, B and H Faraday’s law, Energy in magnetic field, Displacement current, Maxwell’s equations in Media, Poyntings Theorem, E.M. Waves: Wave equation, plane waves, polarization and types of polarization, Energy and momentum of plane E.M. waves. Propagation through linear media and conductors. Reflection and transmission at normal incidence from dielectric and metal interfaces. Magnetism as a relativistic phenomenon. Relativistic transformations of E B fields (simple illustrations only), Diffraction, Quantum Mechanics, Photons, Uncertainty Principle, Electron diffraction experiments, De Broglie Hypothesis, Born interpretation, Schrodinger-Equation and application to 1-D box problem.
tool material, tool wear and practical machining operations (turning, milling
and drilling), Grinding processes, Finishing processes, Introduction to
unconventional machining processes (EDM, ECM, UCM, CHM, LBM) etc., Welding
& Other Joining Processes, Fundamentals of welding & classification of welding
processes, Gas and arc welding, Brazing and soldering, Adhesive bonding,
Mechanical fastening, Heat Treatment, Principles of heat treating; annealing,
normalizing, hardening and tempering, Manufacturing of Polymer and Powder
Products, Classification of polymers, Introduction to extrusion, injection molding,
blow molding, compression and transfer molding, Green compacts from powders
including slip casting of ceramics, Sintering, Modern Trends in Manufacturing.
EE 200 SIGNALS, SYSTEMS AND NETWORKS
Prereq. ESc 102
L-T-P-D-[C]
3-1-0-0-[4]
Continuous and discrete time signals; Fourier series, Fourier, Laplace and Z transform techniques; DFT. Sampling Theorem. LTI systems: I/O description, impulse response and system functions, pole/zero plots, FIR and IIR systems. Analog and digital filters. Networks: topological description, network theorems, Two port analysis.

EE 210 MICROELECTRONICS - I
Prereq. ESc 102
L-T-P-D-[C]
3-1-0-0-[4]

EE 250 CONTROL SYSTEM ANALYSIS
Prereq. EE 200 or #
L-T-P-D-[C]
3-1-0-0-[4]
Linear feedback control systems, frequency and time domain analysis, I/O relationships, transfer function, performance analysis, Routh-Hurwitz and Nyquist stability criteria, Bode diagrams, Nicholas chart, Root locus method, Feedback system design. Non-linear systems, phase-plane analysis, limit cycles, describing function.

EE 301 DIGITAL SIGNAL PROCESSING
Prereq. EE 200
L-T-P-D-[C]
3-0-0-0-[4]

EE 311 MICROELECTRONICS - II
Prereq. EE 210
L-T-P-D-[C]
3-0-0-0-[4]
Basics of semiconductor physics, p-n junction diodes, Metal-semiconductor contacts, BJTs, MOS capacitors, MOSFETs, optoelectronic devices, Advanced semiconductor devices: MESFETs, HBTs, HEMTs, MODFETs.

EE 320 PRINCIPLES OF COMMUNICATION
Prereq. EE 200
L-T-P-D-[C]
3-1-0-0-[4]
Communication problem and system models. Representation of deterministic and stochastic signals. Analog and digital modulation systems, Receiver structures, SNR and error probability calculations, Frequency and time division multiplexing. Digital encoding of analog signals. Elements of information theory, Multiple access techniques and ISDN.
EE 321 COMMUNICATION SYSTEMS Prereq. EE 320
L-T-P-D-[C] 3-0-0-0-[4]

EE 330 POWER SYSTEMS Prereq. ESO 210
L-T-P-D-[C] 3-1-0-0-[4]

EE 340 ELECTROMAGNETIC THEORY Prereq. PHY 103
L-T-P-D-[C] 3-1-0-0-[4]
Basics of Static electric and magnetic fields, Energy in fields, Maxwell's equations, plane EM waves, Propagation in free space and in matter, Reflection and refraction, Guided EM waves, Transmission lines, Radiation of EM waves.

EE 360 POWER ELECTRONICS Prereq. ESc 102
L-T-P-D-[C] 3-0-3-0-[4]
Power semiconductor devices: structure and characteristics; snubber circuits, switching loss. Controlled rectifiers: full/half controlled converters, dual converters, sequence control. AC regulator circuits, reactive power compensators. dc-dc converters, switching dc power supplies. Inverters: square wave and pwm types, filters, inverters for induction heating and UPS.

EE 370 DIGITAL ELECTRONICS & MICROPROCESSOR TECHNOLOGY Prereq. ESC 102
L-T-P-D-[C] 3-1-0-0-[4]
Analysis of digital logic families: TTL, MOS, CMOS Inverters; interfacing between logic families; various logic functions and their implementation; Bistable circuits - R-S, J-K, D and PLA; Design of synchronous sequential circuits. Microprocessor based systems : Number systems, Arithmetic operations in integer and floating point systems; ASCII Code; General micro-processor organisation, Memory interfacing, Assembly language and bus signals of 8085; interrupts and their applications; Serial and parallel ports; DMA and its controller; 8253 timer; 8259 interrupt controller.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 380</td>
<td>Electrical Engineering Lab</td>
<td>Prereq. ESC 102, ESO 210, EE 210, EE 250</td>
<td>Experiments from various areas of electrical engineering with emphasis on electronic devices, circuits, control systems and machines.</td>
</tr>
<tr>
<td>EE 381</td>
<td>Electrical Engineering Lab I</td>
<td>Prereq. EE 320 or #, EE 370 or #, EE 380</td>
<td>Experiments from various areas of electrical engineering with emphasis on digital electronics, communications, machines, drives and power systems, and electromagnetics.</td>
</tr>
<tr>
<td>EE 403</td>
<td>Advanced Digital Signal Processing</td>
<td>Prereq. EE 301</td>
<td>Review of linear algebra; functional analysis, time-frequency representation; frequency scale and resolution; uncertainty principle, short-time Fourier transform, Multi-resolution concept and analysis, Wavelet transforms. Wigner-ville distributions. Multi-rate signal processing; discrete-time bases and filter banks; 2D signals and systems, 2D sampling in arbitrary lattices, 2D-linear transforms, 1D/2D signal compression; introduction to DSP architecture.</td>
</tr>
<tr>
<td>EE 414</td>
<td>Low Noise Amplifiers</td>
<td>Prereq. EE 320, EE 311</td>
<td>Noise and its characterisation, Noise figure calculations, Noise in semiconductors, P-N junction, Metal semiconductor junctions, Tunnelling: Varactors and their application as parametric amplifiers and multipliers. Tunnel diode amplifiers, Schottky diode Mixers, Masers, Design aspects of low noise amplifiers and mixers.</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Prereq.</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>EE 416</td>
<td>OPTO-ELECTRONICS</td>
<td>EE 210, EE 340</td>
<td></td>
</tr>
<tr>
<td>EE 417</td>
<td>INTRODUCTION TO VLSI DESIGN</td>
<td>EE 210, EE 370 or #</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Review of MOS device operation; fabrication and layout; combinational and sequential logic design; verification and testing; arithmetic blocks, memory; architecture design; floor planning; design methodologies; example of a chip design; analysis and synthesis algorithms including circuit, switch and logic simulation, logic synthesis, layout synthesis and test generation; packaging.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE 422</td>
<td>COMMUNICATION SYSTEM ENGINEERING</td>
<td>EE 320</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baseband signal characterisation-telegraphy, telephony, television and data; message channel objective; voice frequency transmission, radio wave propagation methods: random noise characterization in communication systems, intermodulation distortion : line of sight systems description and design; troposcatter systems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE 431</td>
<td>ELECTRICAL MACHINES</td>
<td>ESO 210</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnetic circuits and transformers including three-phase transformers. Electromechanical energy conversion. General principle of AC machines. Synchronous machines including power system interfacing. Induction machine including starting and speed control of motors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE 432</td>
<td>POWER GENERATION, 3-0-0-0-4</td>
<td>ESO 210</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power generation from conventional sources; thermal, hydro, nuclear and gas power plants - their functions and control; types of prime movers, generators and excitation systems; Economic considerations in power systems. Alternate sources of power generation - solar, wind, geo-thermal, ocean-thermal, tidal, wave and MHD.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE 437</td>
<td>FUNDAMENTALS OF HV ENGG & LABORATORY TECHNIQUES</td>
<td>EE 330</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electromagnetic fields, field control, Dielectrics used in HV and their properties, Standard voltage wave-forms, Generation and measurement of HV ac, dc and impulse voltages, Non-destructive testing, HV bushings & insulators, Overvoltage phenomena & insulation coordination</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EE 441
MICROWAVES
Prereq. EE 340
Active devices: LHTs, klystrons, magnetrons, TWTs, BWOs, microwave transistors; point contact, tunnel, PIN, and GUNN diodes; Parametric amplifier masers. Microwave circuits-theory of guiding systems, scattering matrix impedance transformation and matching. Passive devices: ferrites & ferrite devices, microwave cavity.

EE 442
ANTENNAS AND PROPAGATION
Prereq. EE 340

EE 443
RADAR SYSTEMS
Prereq. EE 320
Radar equation, CW and Frequency Modulated Radars, MTI and pulse Doppler radar, MTI delay line cancellors. MTI from moving platform, Tracking radars. Mono-pulse tracking in range/Doppler; Electronic scanning radars, Beam forming and Steering methods, Noise and Clutter; Ambiguity function; Radar signal processing; SAR.

EE 444
RADIO ASTRONOMY
Prereq. EE 340

EE 451
ADVANCED CONTROL SYSTEMS
Prereq. EE 250

EE 455
TRANSDUCERS AND INSTRUMENTATION
Prereq. #
Measurement process; scales of measurement; configuration and functional description of measurement systems; performance characteristics; sensing
elements and transducers for measurement of motion, force, pressure, flow, temperature, light, vacuum, etc.; transducer interfacing; signal conditioning, transmission and recording; microprocessor based instrumentation.

EE 480
ADVANCED ELECTRICAL ENGINEERING LABORATORY 1 Prereq. EE480

The purpose of this course is to allow students to do new and challenging experiment in emerging areas of Electrical Engineering under the guidance of an assigned department faculty member. This would also facilitate the task of developing new experiments for EE380/381 as well.

EE 481
ADVANCED ELECTRICAL ENGINEERING LABORATORY 2 Prereq. EE481

The purpose of this course is to allow students to do new and challenging experiment in emerging areas of Electrical Engineering under the guidance of an assigned department faculty member. This would also facilitate the task of developing new experiments for EE380/381 as well.

EE 491
PROJECT - I, 0-0-0-9-3, Fourth Year Standing EE 491
PROJECT - II, 0-0-0-15-5, EE492 Prereq. EE 491

POST-GRADUATE COURSES

EE 600
MATHEMATICAL STRUCTURES OF SIGNALS & SYSTEMS Prereq. #

Nature of definitions; Theory of measurement and scales; Symmetry, invariance and groups; Groups in signals and systems; Algebraic and relational structures of signal spaces and convolutional systems; Representation theory of groups, harmonic analysis and spectral theory for convolutional systems.

EE 601
MATHEMATICAL METHODS IN SIGNAL PROCESSING Prereq. #

EE 602
STATISTICAL SIGNAL PROCESSING I

EE 603 ADVANCED TOPICS IN DIGITAL FILTERING
L-T-P-D-[C]
3-0-0-0-[4]

EE 604 IMAGE PROCESSING
L-T-P-D-[C]
3-0-0-0-[4]
Human visual system and image perception, monochrome & color vision models, color representation; image sampling & quantization; 2-D systems; image transforms; image coding; stochastic models for image representation; image enhancement, restoration & reconstruction. Image analysis using multiresolution techniques.

EE 605 INTRODUCTION TO SIGNAL ANALYSIS
L-T-P-D-[C]
3-0-0-0-[4]

EE 606 ARCHITECTURE AND APPLICATIONS OF DIGITAL SIGNAL PROCESSORS,
L-T-P-D-[C]
3-0-0-0-[4]
Review of DSP fundamentals. Issues involved in DSP processor design - speed, cost, accuracy, pipelining, parallelism, quantization error, etc. Key DSP hardware elements - Multiplier, ALU, Shifter, Address Generator, etc. TMS 320C55 X and TM 320C6X and 21000 family architecture and instruction set. Software development tools - assembler, linker and simulator. Applications using DSP Processor - spectral analysis, FIR/IIR filter, linear-predictive coding, etc.

EE 607 WAVELET TRANSFORMS FOR SIGNAL AND IMAGE PROCESSING
L-T-P-D-[C]
3-0-0-0-[4]
Basics of functional Analysis; Basics of Fourier Analysis; Spectral Theory; Time-Frequency representations; Nonstationary Processes; Continuous Wavelet Transforms; Discrete Time-Frequency Transforms; Multi resolution Analysis; Time-Frequency Localization; Signal Processing Applications; Image Processing Applications
EE 608
STATISTICAL SIGNAL PROCESSING II
Prereq. #
Power Spectrum Estimation, model order selection, Prony, Pisarenko, MUSIC, ESPRIT algorithms, least square estimation, cholesky, LDU-OR, SV decomposition. Transversal & reasnic least square lattice filters, Signal Analysis with Higher order Spectra, Array processing, Beam fomning, Time-delay estimation.

EE 609
BASICS OF BIOMEDICAL SIGNAL AND IMAGE PROCESSING
Prereq. #
Speech and pathology of vocal tract/ cords, Perpetual coding of audio signal and data compression, Spatio-temporal nature of bioelectric signals, cardiac generator and its models, Specific digital technique for bioelectric signals, Modes of medical imaging.

EE 610
ANALOG/DIGITAL VLSI CIRCUITS
Prereq. #

EE 611
FLUCTUATION PHENOMENA IN MICROELECTRONICS
Prereq. #
Stochastic variables of interest in physical electronics (e.g. carrier concentration, potential, barrier heights, mobility, diffusion constant, G-R time, avalanche coefficients etc.). Thermodynamic considerations. Manifestation of stochastic processes in physical electronics. Instrumentation.

EE 612
FIBER OPTIC SYSTEMS I
Prereq. #

EE 613
MEASUREMENTS, PARAMETER EXTRACTION AND SLSI TOOLS IN MICROELECTRONICS
Prereq. #
Essentially a lab course aimed at imparting basic measurement, analysis and software skills relevant to microelectronics. Experiments related to BJT DC characteristics, MOS C-V measuremets, interface state density and DLTS. SPICE simulation of complex CMOS gate; full custom cell layout; logic simulation; multi-level logic minimization using VIEWLOGIC tools.
EE 614 SOLID STATE DEVICES I Prereq. #
L-T-P-D-[C] 3-0-0-0-[4]
Basic semiconductor physics. Diodes (P-N junction, Schottky, contact), Junction Transistors (BJT, HBT), Field Effect Transistors (JEF, MESFET, MOSFET, HEMT). Other semiconductor devices.

EE 615 HIGH FREQUENCY SEMICONDUCTOR DEVICES AND CIRCUITS Prereq. EE 614
L-T-P-D-[C] 3-0-0-0-[4]
Review of Semiconductor properties - Crystal structure of semiconductors, band theory, occupation statistics, electrical properties, optical properties, recombination kinetics, avalanche process in semiconductors, photon statistics; MESFETs; Transport in low dimensional structures: HEMTs: Hetrojunction BJTs; Design of high frequency amplifiers and oscillators, Resonant tunneling structures, RTD oscillators; Intervallay scattering, Gunn diodes, IMPATT diodes; TRAPATTs; Mixer diodes; Step recovery diodes; Introduction to epitaxial growth for these structures; elements of device fabrication.

EE 616 SEMICONDUCTOR DEVICE MODELLING Prereq. #
L-T-P-D-[C] 3-0-0-0-[4]
Models for metal-semiconductor contacts and heterojunctions. MOSFET - quantum theory of 2DEG, gradual channel approximation, charge control models, BSIM model, second-order effects. MESFET-Shockley, velocity saturation and universal models. HEFT - Basic and universal models. SPICE and small-signal models.

EE 617 FIBER OPTIC SYSTEMS II Prereq. #
L-T-P-D-[C] 3-0-0-0-[4]

EE 618 INTEGRATED CIRCUIT TECHNOLOGY Prereq. #
L-T-P-D-[C] 3-0-0-0-[4]
IC components - their characterization and design. Analysis and design of basic logic circuits. Linear ICs. Large Scale Integration. Computer simulation of ICs and layout design. High Voltage ICs. GaAs MESFET and GaAs ICs. Failure, reliability and yield of ICs. Fault modeling and testing.

EE 619 VLSI SYSTEM DESIGN Prereq. #
L-T-P-D-[C] 3-0-0-0-[4]
Emphasis on the synthesis based approach to VLSI Design. Relevant issues related to physical design automation such as placement, floor planning, routing and
compaction are covered. Combinational & sequential logic synthesis issues and algorithms are discussed. Detailed coverage of HDLs and high level synthesis algorithms and issues.

EE 620
APPLI CATION OF CDMA TO CELLULAR COMMUNICATIONS Prereq. EE 621
L-T-P-D-[C]
3-0-0-0-[4]

EE 621
REPRESENTATION AND ANALYSIS OF RANDOM SIGNALS Prereq. #
L-T-P-D-[C]
3-0-0-0-[4]
Review of probability, random variables, random processes; representation of narrow band signals. Transmission of signals through LTI systems; Estimation and detection with random sequences; BAYES, MMSE, MAP, ML schemes. K-L and sampling theorem representations, matched filter, ambiguity functions, Markov sequences, linear stochastic dynamical systems.

EE 622
COMMUNICATION THEORY Prereq. #
L-T-P-D-[C]
3-0-0-0-[4]
Rate Distortion Theory, Channel Coding Theorems, Digital Modulation Schemes, Trellis Coded Modulation, Digital Transmission over Bandlimited Channels, Fading Multipath Channels, Synchronization. Analog Modulation Schemes, Optimum/Suboptimum Receivers; Diversity Combining; Cellular Mobile Communication; Equalization.

EE 623
DETECTION & ESTIMATION THEORY Prereq. #
L-T-P-D-[C]
3-0-0-0-[4]

EE 624
INFORMATION & CODING THEORY Prereq. #
L-T-P-D-[C]
3-0-0-0-[4]
Enteropy and mutual information, rate distortion function, source coding, variable length coding, discrete memoryless channels, capacity cost functions, channel coding, linear block codes, cyclic codes. Convolutional codes, sequential and probabilistic decoding, majority logic decoding, burst error-correcting codes.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prereq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 625</td>
<td>SATELLITE COMMUNICATION</td>
<td>Prereq. #</td>
</tr>
<tr>
<td></td>
<td>Introduction. Historical background and overall perspective; Satellite network modeling; Link calculations; FM analysis; TV Transmission; Digital modulation; Error control; Multiple access; FDMA, TDMA, CDMA. Orbital considerations; Launching; Atmospheric effects; Transponders; Earth Stations; VSATs.</td>
<td></td>
</tr>
<tr>
<td>EE 626</td>
<td>TOPICS IN STOCHASTIC PROCESSES</td>
<td>Prereq. EE 621 or equiv. #</td>
</tr>
<tr>
<td>EE 627</td>
<td>SPEECH SIGNAL PROCESSING</td>
<td>Prereq. #</td>
</tr>
<tr>
<td></td>
<td>Spectral and non-spectral analysis techniques; Model-based coding techniques; Noise reduction and echo cancellation; Synthetic and coded speech quality assessment; Selection of recognition unit; Model-based recognition; Language modelling; Speaker Identification; Text analysis and text-to-speech synthesis.</td>
<td></td>
</tr>
<tr>
<td>EE 628</td>
<td>TOPICS IN CRYPTOGRAPHY AND CODING</td>
<td>Prereq. #</td>
</tr>
<tr>
<td></td>
<td>Cryptography and error control coding in communication and computing systems. Stream and block ciphers; DES; public-key cryptosystems; key management, authentication and digital signatures. Codes as ideals in finite commutative rings and group algebras. Joint coding and cryptography.</td>
<td></td>
</tr>
<tr>
<td>EE 629</td>
<td>DIGITAL SWITCHING</td>
<td>Prereq. #</td>
</tr>
<tr>
<td></td>
<td>Network Architecture; time division multiplexing; digital switching; space & time division switching, cross point and memory requirements; blocking probabilities. traffic Analysis, models for circuit and packet switched systems, performance comparison; ISDN.</td>
<td></td>
</tr>
<tr>
<td>EE 630</td>
<td>SIMULATION OF MODERN POWER SYSTEMS</td>
<td>Prereq. #</td>
</tr>
<tr>
<td></td>
<td>Modern power systems operation and control, Power system deregulation; static and dynamic modeling; Load flow and stability studies; Electromagnetic phenomenon; Insulation and partial discharge.</td>
<td></td>
</tr>
</tbody>
</table>
EE 631
ADVANCED POWER SYSTEM STABILITY
Prereq. #
Detailed machine modeling, Modeling of turbine-generator and associated systems, excitation systems and PSS, Transient stability and small signal stability for large systems, SSR and system modeling for SSR studies, Voltage stability: P-V and Q-V curves, static analysis, sensitivity and continuation method; Dynamic analysis, local and global bifurcations, Control area, Margin prediction, Stability of AC-DC systems.

EE 632
ECONOMIC OPERATION & CONTROL OF POWER SYSTEMS
Prereq. #
Economic load dispatch, loss formula, introduction to mathematical programming, hydrothermal scheduling systems, power system security, optimal real and reactive power dispatch, state estimation, load frequency control, energy control center.

EE 633
ELECTRIC POWER SYSTEM OPERATION AND MANAGEMENT UNDER RESTRUCTURED ENVIRONMENT
Preq. #

EE 634
ELECTRICAL INSULATION IN POWER APPARATUS AND SYSTEMS
L-T-P-D-[C] 3-0-0-0-[4]
- Properties of dielectrics and breakdown mechanisms; composites and novel materials; insulators for outdoor applications.
- Issues in design of insulators and insulator systems.
- Overvoltages and insulation coordination in transmission networks.
- Generation and measurement of testing Voltages -DC, AC, impulse and pulsed.
• On-line and off-line condition monitoring of sub-station equipment.

• Advances in measurement and diagnostic technologies: partial discharge monitoring, space charge charge measurements, dielectric spectroscopy, etc.

• Lab demonstrations

EE 635
HVDC TRANSMISSION AND FLEXIBLE AC TRANSMISSION SYSTEMS
Prereq. None

General aspects of DC transmission, converter circuits and their analysis, DC link controls, faults and abnormal operation and protection; Mechanism of active and reactive power flow control; Basic FACTS controllers: SVC, STATCOM, TCSC, TCPPAR, UPFC; Modeling of FACTS Controllers; System static performance improvement with FACTS controllers; System dynamic performance improvement with FACTS controllers

EE 636
ADVANCED PROTECTIVE RELAYING
Prereq. #

Advanced protective relaying, basic protection schemes, relay terminology, relays as comparators, static relays, application of solid state devices, differential relaying systems, distance relaying schemes, protection of multiterminal lines, new types of relaying criteria, special problems, digital protection.

EE 638
HIGH VOLTAGE ENGINEERING BEHAVIOR OF DIELECTRICS
Prereq. #

Electric fields and their numerical estimation; avalanche, streamer and leader processes; breakdown mechanisms, arcs, breakdown characteristics of gases, liquids and solids; intrinsic and practical strengths of dielectrics; ageing of solids, liquids and gases; gas insulated systems; effects of corona.

EE 640
COMPUTATIONAL ELECTRO-MAGNETICS
Prereq. #

Review of complex variables, conformal mappings, matrix calculus; Sturm Liouville equation; Eigenvalue problem; Guiding structures; Scattering media; Green’s function approach; Variational formulation, FEM, Generalised scattering matrix and planar circuit approach.

EE 641
ADVANCED ENGINEERING ELECTRO MAGNETICS
Prereq. #

Transmission line theory; Green’s function and integral transform techniques; Wave propagation and polarization parameters; reflection and transmission
across an interface; waveguides, cavity resonators, scattering by cylinders, wedges, spheres etc. Geometric theory of diffraction.

EE 642 ANTENNA ANALYSIS & SYNTHESIS
Prereq. #
Vector potential; antenna theorems and definitions; dipole, loop, slot radiators; aperture antennas; array theorems; pattern synthesis; self and mutual impedances; scanning antennas; signal processing antennas, travelling wave antennas; antenna measurements.

EE 643 SMART ANTENNAS FOR MOBILE COMMUNICATIONS
Prereq. #

EE 645 MONOLITHIC MICROWAVE ICS
Prereq. EE 340, EE 210
Scattering parameters of n-ports, Conductor and dielectric losses in planar transmission lines, coupled lines, multi-conductor lines, discontinuities, GaAs MESFET fabrication devices, High electron mobility transistor, Heterojunction bipolar transistor fabrication and modeling, NMIC technology and design.

EE 646 PHOTONIC NETWORKS AND SWITCHING
Prereq. #

EE 647 MICROWAVE MEASUREMENTS AND DESIGN
Prereq. #
Experiments in basic microwave measurements; passive and active circuit characterization using network analyser, spectrum analyser and noise figure
Transmission lines for microwave circuits; waveguides, stripline, microstrip, slot line; microwave circuit design principles; passive circuits; impedance transformers, filters, hybrids, isolators etc., active circuits using semiconductor devices and tubes, detection and measurement of microwave signals.

Microscopic measurement; PC based automated microwave measurements; integration of measurement and design of microwave circuits.

EE 648 MICROWAVE CIRCUITS
Prereq. EE 340

EE 649 THE FINITE ELEMENT METHOD FOR ELECTRIC AND MAGNETIC FIELDS

- Introduction to the Finite Element Method using electrostatic fields: Galerkin's method of weighted residuals, Minimum energy principle, Calculation of capacitance, electric field, electric forces from the potential solutions.
- Finite Element Concepts: Pre-processing, shape functions, isoparametric elements, meshing, solvers, post-processing.
- Finite Element Modeling: Conductive media, steady currents; Magnetostatic fields, permanent magnets, scalar and vector potentials; Electromagnetic fields, eddy current problems, modeling of moving parts; modeling of electrical circuits.

Laboratory:
Matlab and Femlab simulation

EE 650 BASICS OF MODERN CONTROL SYSTEMS
Prereq. #

Vector spaces, Linear systems, similarity transformations, Canonical forms, Controllability, Observability, Realisability etc. Minimal realization, Digital systems, Nonlinear systems, Phase-plane analysis, Poincare's theorems, Lyapunov theorem, Circle and Popov criterion; Robust control, Linear Quadratic Regulator (LQR), Linear Quadratic Gaussian (LQG) control, Loop Transfer Recovery (LTR), H-infinity control.

EE 651 NONLINEAR SYSTEMS
Prereq. EE 451

Describing function, phase-plane analysis. Poincare's Index, Bendixson's theorem. Linearization. Lyapunov stability, stability theorems, variable-gradient technique

EE 652
LINEAR STOCHASTIC DYNAMIC SYSTEMS
Prereq. EE 621
L-T-P-D-[C]
3-0-0-0-[4]

EE 653
DIGITAL CONTROL
Prereq. #
L-T-P-D-[C]
3-0-0-0-[4]

EE 654
ROBUST CONTROL SYSTEMS
Prereq. #
L-T-P-D-[C]
3-0-0-0-[4]

EE 655
OPTIMAL CONTROL
Prereq. EE 650
L-T-P-D-[C]
3-0-0-0-[4]

EE 656
CONTROL SYSTEM DESIGN
Prereq. #
L-T-P-D-[C]
3-0-3-0-[5]

EE 657
MATHEMATICAL METHODS IN CONTROL SYSTEMS
Prereq. #
L-T-P-D-[C]
3-0-0-0-[4]
Real and complex Euclidean spaces, Infinite dimensional inner product, complete spaces, Linear functionals and operators, Eigenvalues and eign vectors, complete
orthogonal representations, Errors solutions to systems of linear equations, Matrix inversion, pivoting eigenvalue and eigen vector calculations, SVD, Non linear equations, probability theory, concepts, random variables, distribution functions, moments and statistics of multiple variables, MS estimations, stochastic processes.

EE 658

FUZZY SET, LOGIC & SYSTEMS AND APPLICATIONS

- Prereq. #

EE 660

BASICS OF POWER ELECTRONICS CONVERTERS

- Prereq. #

Power semiconductor devices, BJT, MOSFET, IGBT, GTO and MCT: AC-DC Converters; Forced communication; synchronous link converters, DC-AC converters, buck, boost, buck-boost, cuk, flyback configuration, resonant converters, PWM inverters; active filters.

EE 661

POWER ELECTRONICS APPLICATIONS IN POWER SYSTEMS

- Prereq. #

Basics of flexible AC transmission systems, Controlled rectifier and energy storage plants, Tap changers and phase shifters, Thyristor controlled VAR compensation and series compensation, Modern (synchronous link converter) VAR compensators, Unified power flow controller (UPFC) and Interline power flow controller, Power quality conditioners, Power electronics in power generation.

EE 662

CONTROL TECHNIQUES IN POWER ELECTRONICS

- Prereq. #

State space modeling and simulation of linear systems, Discrete time models, conventional controllers using small signal models, Fuzzy control, Variable
structure control, Hysteresis controllers, Output and state feedback switching controllers

EE 663
MODELING AND SIMULATION OF POWER ELECTRONIC SYSTEMS
Prereq. #
Machine modeling, DC, induction motor and synchronous machines; simulation of transients; simulation tools: SABER, PSPICE, and MATLAB-SIMULINK; Simulations of converters, inverters and cyclo-converters etc.

EE 664
FUNDAMENTALS OF ELECTRIC DRIVES
Prereq. #
Motor load dynamics, starting, braking & speed control of dc and ac motors. DC drives: converter and chopper control. AC Drives: Operation of induction and synchronous motors from voltage and current inverters, slip power recovery, pump drives using ac line controller and self-controlled synchronous motor drives.

EE 665
ADVANCED ELECTRIC DRIVES
Prereq. #
Closed loop control of solid state DC drives, Scalar and vector control of induction motor, Direct torque and flux control of induction motor, Self controlled synchronous motor drive, Vector control of synchronous motor, Switched reluctance motor drive, Brushless DC motor drive, Permanent magnet drives, Industrial drives.

EE 666
SPECIAL TOPICS IN POWER ELECTRONICS
Prereq. #
PWM inverters, Multilevel inverters, Neutral point controlled inverters, Soft switching converters: DC-DC resonant link inverters, Hybrid resonant link inverters, Quasi resonant link converters, Switched mode rectifiers, Synchronous link converters.

EE 671
NEURAL NETWORKS
Prereq. #
Theory of representation; Two computational pradigms; Multi-layer networks; Auto-associative and hetero-associative nets; Learning in neural nets: Supervised and unsupervised learning; Application of neural nets; Neural network simulators.

EE 672
COMPUTERVISION AND DOCUMENT PROCESSING
Prereq. #
Human and computer vision, Image representation and modelling, Line and edge detection, Labeling, Image segmentation, Pattern recognition, Statistical, structural
neural and hybrid techniques, Training & classification, Document analysis and optical character recognition, object recognition, Scene matching & analysis, Robotic version, Role of knowledge.

EE 673
DIGITAL COMMUNICATION NETWORKS
Prereq. #
OSI model, queueing theory, physical layer, error detection and correction, data link layer, ARQ strategies, framing, media access layer, modelling and analysis of important media access control protocols, FDDI and DQDB MAC protocols for LANs and MANs, network layer, flow control & routing, TCP/IP protocols, ATM.

EE 674
Architecture of advanced Microprocessors and Microcontrollers
Prereq. EE 370
Introduction to the general structure of advanced microprocessors and microcontrollers. Discussions on architectures, instruction sets, memory hierarchies, pipelining and RISC principles. Specific details of MC68HC11, MC68000 and Power PC 601. Laboratory based experiments and projects with these devices.

EE 675
DIGITAL CIRCUIT DESIGN
Prereq. EE 370
Combinational circuit design; implementation using programmable logic devices & field programmable gate arrays. Synchronous & asynchronous sequential circuits. Micro-programming and use of AMD 2909 micro-sequencer in sequential circuits. Issues related to fault detection, fault tolerance, and reliable design.

EE 676
DIGITAL, MOBILE RADIO SYSTEMS
Prereq. #

EE 677
KNOWLEDGE BASED MAN MACHIN E SYSTEMS
Prereq. #
Knowledge representation, state-space techniques, logic, semantic networks, frames, script. Production system, object oriented and ANN models. Applications in robotic vision and processing of documents, natural languages and speech. Course Project involving extensive programming is compulsory.

EE 678
NEURAL SYSTEMS AND NETWORKS, 2-0-3-4 Prereq. #
Memory: Eric Kandel’s memory and its physiological basis, Explicit and Implicit memories, Short Term and Long Term potentiation (STP and LTP), Hopfield’s Model of Associative Memories, its comparison with Kandel’s model, Stability of Hopfield net, its use as CAM, Hamming’s Model and comparison of number of weights, Learning: Supervised and Unsupervised nets, Learning Methods, Neural systems: Different types of neurons, dendrites, axons, role of \(Na^+ K^+ \) ATPase and resting potentials, synaptic junctions and transmission of action potentials, Consciousness and its correlation with respiratory sinus arrhythmia, a bioinstrumentation scheme for its measurement; Neural nets for technical applications: Bidirectional Associative Memories (SAMs), Radial Basic, Function nets. Boltzmann machine, Wavelet nets, Cellular Neural Nets and Fuzzy nets.

EE 679
QUEUEING SYSTEMS Prereq. #
Review of probability and stochastic processes, Markov chains, Little’s theorem, modelling & analysis of \(M/M/- \) queues, Burke’s Theorem, Reversibility, Method of stages, Analysis of \(M/G/1 \) queues, Queues with vacations, Work conservation principle, Priority queues, Queues served in cyclic order, Fluid-flow and diffusion approximations.

EE 680
INTELLIGENT INSTRUMENTATION
Introduction, data flow and graphical programming techniques, Virtual instrumentation (VI), advantages, VIs and Sub-VIs, Data acquisition methods, DAQ hardware, PC hardware; Structure, Operating system, ISA, PCI, USB, PCMICA buses, Instrumentation buses. IEEE 488.1 and

EE 698
Special Topics in Electrical Engineering,
Courses contents will be decided by the instructor

EE 699
M. Tech. Thesis

EE 799
Ph. D. Thesis