Optics of GW detectors Review of optics

Pradeep Kumar K

Center for Lasers & Photonics Indian Institute of Technology Kanpur

Outline

Electromagnetic fundamentals

- 3 Michelson interferometer
 - Fabry-Perot cavity

Detecting optical signals

- Sinusoidal optical signals characterized by amplitude/power, frequency, phase, and polarization
- Photodetector (PD): Produces current proportional to incident optical *power* $I_{ph} = \mathcal{R}P_{opt}$ \mathcal{R} =PD responsivity
- PDs are insensitive to phase of optical waves
- How to measure phase then? Using an interferometer

What is an interferometer?

- Interferometers converts phase to intensity/power
- In GW detector context
 - optical phase difference \propto differential strain: $\delta \phi = G \delta L$
 - converts $\delta \phi$ to intensity/power
 - Goal is to make G large

$$\begin{array}{c} \Phi_m \longrightarrow \\ \Phi_r \longrightarrow \end{array} \begin{array}{c} \mathbf{2} \operatorname{port} \\ \operatorname{interferometer} \end{array} \xrightarrow{} I_{out1} = f_1(\phi_m, \phi_r) \\ \longrightarrow I_{out2} = f_2(\phi_m, \phi_r) \end{array}$$

• ϕ_m =phase to be measured, ϕ_r =reference phase

Michelson interferometer layout

Consists of light source, two arms with end mirrors, and beamsplitter

Michelson interferometer from 1881; simplified optical layout

Maxwell's equations

- Classical light is electromagnetic phenomena; described by Maxwell's equations
 - Faraday's law: $\nabla \times \vec{E}(\vec{r},t) = -\frac{\partial}{\partial t} \vec{B}(\vec{r},t)$
 - Ampere-Maxwell law: $\nabla \times \vec{H}(\vec{r},t) = \frac{\partial}{\partial t}\vec{D}(\vec{r},t) + \vec{J}(\vec{r},t)$
 - Gauss's laws: $\nabla \cdot \vec{D}(\vec{r},t) = \rho(\vec{r},t)$ and $\nabla \cdot \vec{B}(\vec{r},t) = 0$
 - Constitutive relations $\vec{D} = \epsilon \vec{E}$ and $\vec{B} = \mu \vec{H}$ encode medium properties
- Harmonic solutions: $\vec{E}(\vec{r},t) = \vec{E_0} \cos(\omega t + \phi(\vec{r})) = \text{Re}[\vec{E_0}e^{j\phi(\vec{r})}e^{j\omega t}]$

•
$$\underline{\vec{E}} = \vec{E_0} e^{j\phi(\vec{r})}$$
 is called a **phasor**

Phasor representation

- Complex number, represented as a vector in complex plane
- Time-domain: $E \cos(\omega t + \phi) \rightarrow E e^{j\phi} = \underline{E}$: Phasor
- Phasor: $\underline{E} \rightarrow \text{Re}[\underline{E}e^{j\omega t}]$: Time-domain
- Exercise: Obtain phasor form of $\hat{x} \cos(\omega t kz) + \hat{y} 2 \sin(\omega t kz)$

E. D. Black and R. N. Gutenkust, AJP, 71(4), 2003

Describing optical waves: Plane wave description

From Maxwell's equations we obtain wave equation

$$\nabla^2 \underline{\vec{E}} \vec{r} + \omega^2 \mu \epsilon \underline{\vec{E}} (\vec{r}) = \mathbf{0}$$

- Optical waves propagating in *z*-direction; $\underline{\vec{E}}(\vec{r}) = \underline{\vec{E}}_T(x, y)Ae^{-jkz}$
 - $k = \omega/c = 2\pi/\lambda$ is phase constant
 - $\underline{\vec{E}}_T(x, y)$ = transverse field distribution
 - Plane wave: $\underline{\vec{E}}_T(x, y)$ independent of x and y coordinates
 - Longitudinal part Ae^{-jkz} is a complex number at each z
 - $\underline{\vec{E}}_T$ determines **polarization** of wave
- Normalize such that $|A|^2$ is optical power

Polarization of light

- Defined as orientation of electric field vector \vec{E} in space
 - Linear polarization: \vec{E} orientation constant with time
 - Elliptical polarization: *E* orientation varies with time
 - Jones vector: $\begin{pmatrix} A_x \\ A_y \end{pmatrix}$
- Optical elements such as guarter-wave and half-wave plates can be used to change polarization

Describing mirrors

- Mirrors are used extensively in GW detectors and other optical systems
- Incident light partially reflected and transmitted by mirror
- Flexibility to choose phase of reflection and transmission coefficients; φ_r = π/2 or π

Mirror matrix is unitary

$$M = \begin{pmatrix} jr & t \\ t & jr \end{pmatrix} \quad MM^{\dagger} = I$$

$$E_1^- = rE_1^+ + t'E_2^-$$

•
$$E_2^+ = tE_1^+ + r'E_2^-$$

•
$$|r| = |r'|$$
 and $|t| = |t'|$

•
$$r^*t' + t^*r' = 0$$
 and $|r|^2 + |t|^2 = 1$

• $R = |r|^2$ reflectivity and $T = |t|^2$ transmittivity

Describing mirrors

- Mirrors are used extensively in GW detectors and other optical systems
- Incident light partially reflected and transmitted by mirror
- Flexibility to choose phase of reflection and transmission coefficients; φ_r = π/2 or π

Mirror matrix is unitary

$$M = \left(egin{array}{cc} jr & t \ t & jr \end{array}
ight) MM^{\dagger} = I$$

$$E_1^+ \longrightarrow E_2^+$$
$$E_1^- \longleftarrow E_2^-$$
$$r', t'$$

•
$$E_1^- = rE_1^+ + t'E_2^-$$

•
$$E_2^+ = tE_1^+ + r'E_2^-$$

•
$$|r| = |r'|$$
 and $|t| = |t'|$

•
$$r^*t' + t^*r' = 0$$
 and $|r|^2 + |t|^2 = 1$

• $R = |r|^2$ reflectivity and $T = |t|^2$ transmittivity

Reflection and transmission coefficients

- Depend upon polarization of incident light, angle of incidence w.r.t. normal to interface, and refractive index on two sides of interface
- TE case: Electric field vectors are perpendicular to plane of incidence
- Coefficients can be derived by applying boundary conditions

G. R. Fowles, Introduction to Modern Optics

Boundary conditions

- At interface, vectors field vectors satisfy following conditions
 - Tangential *E*-field and normal *B*-field are continuous across boundary
 - Tangential *H*-field and normal *D*-field are discontinuous by amount of current and charge densities respectively
- In reflection coefficient calculation for TE case

•
$$E + E' = E'$$

•
$$-H\cos(\theta) + H'\cos(\theta) = -H''\cos(\phi)$$

•
$$E/H = \eta/\sqrt{\epsilon}$$

G. R. Fowles, Introduction to Modern Optics

Reflection and transmission coefficients

- TM case: Magnetic field vectors are perpendicular to plane of incidence
- Coefficients can be derived by applying boundary conditions

G. R. Fowles, Introduction to Modern Optics

Reflection coefficients of TE and TM polarizations

• Zero reflection in TM case when light is incident at **Brewster's** angle

• This plot: $n_1 = 1$ (air) and $n_2 = 1.5$. What happens if $n_1 > n_2$?

Describing lossy mirrors

- Real mirrors are lossy due to absorption by mirror material
- Reflectance+Transmittance+loss=1, $|r|^2 + |t|^2 + L = 1$
- Further complication due to fluctuation-dissipation theorem which states that loss is accompanied by additional noise injected into system
- ϵ = absorption coefficient

Danilishin and Khalili, LRR, 15 (2012)

pradeepk@iitk.ac.in (IIT Kanpur)

Describing beamsplitter

- I/O relation described by same matrix M
- Types: polarizing and non-polarizing
- Common 50:50 beamsplitter:
 - $B = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} j & 1 \\ 1 & j \end{array} \right)$
- **Delay**: $A(L) = A(0)e^{-jk_0nL}$, accumulates phase delay k_0nL w.r.t z = 0

Layout and analysis of Michelson interferometer

- Beamsplitter splits laser light into two parts; one travels towards M_X other towards M_Y
- After reflection at mirrors M_{x,y}, beams recombine at beamsplitter

•
$$A_2 = \frac{j}{\sqrt{2}}A_1, \ A_5 = jr_Y e^{-j2kL_Y}A_2$$

•
$$A_6 = \frac{1}{\sqrt{2}}A_1$$
, $A_9 = jr_X e^{-j2kL_X}A_6$

Interferometer output amplitudes

ASYM port:
$$A_{ASYM} = -\frac{1}{2} (r_X e^{-j2kL_X} - r_Y e^{-j2kL_Y}) A_1$$

SYM port: $A_{SYM} = \frac{j}{2} (r_X e^{-j2kL_X} + r_Y e^{-j2kL_Y}) A_1$

Matrix analysis of Michelson interferometer

- Input vector at port 1: $\vec{\psi} = [A_1 \ 0]^T$
- Propagation+reflection+propagation towards beamsplitter described by matrix $P = \begin{pmatrix} jr_X e^{-j2kL_X} & 0\\ 0 & jr_Y e^{-j2kL_Y} \end{pmatrix}$
- (Try) Multiply three matrices with input vector: $B^{-1}PB\vec{\psi}$ to get A_{ASYM} and A_{SYM}

Effect of gravitational wave

- GW perturbs mirrors and induces changes in reflected light
- $A_5 \rightarrow r_Y e^{-j2kL_Y} e^{-j2kL_Y h(t)/2} A_2$, h(t) induces phase modulation
- Harmonic GW, $h(t) = h_0 \cos(\omega_{gw} t)$ creates sidebands

$$A_5 = A_2(0) \left(1 - \frac{jm}{2}e^{j\omega_{gw}t} - \frac{jm}{2}e^{-j\omega_{gw}t}\right)$$

More about phase modulation later

Understanding interferometer response

- ASYM port amplitude: $A_{ASYM} = -\frac{1}{2} \left(r_X e^{-j2kL_X} r_Y e^{-j2kL_Y} \right) A_1$
- Assume perfectly reflecting mirrors without loss: $r_X = r_Y = 1$
- ASYM port power $P_{ASYM} = P_{in} \sin^2(k\Delta L), \Delta L = L_X L_Y$

Operating in linear region

- Under GW perturbation, $L_X \rightarrow L_X + \delta I_X$ and $L_Y \rightarrow L_Y + \delta I_Y$
- Amplitude strain $h = \frac{\delta l_X \delta l_Y}{L}$, $L = \frac{L_X + L_Y}{2}$ is avg. length
- $P_{ASYM} = P_{in} \sin^2(k\Delta L + khL)$. What should be $k\Delta L$ for operation in linear region?
- Expand *P_{ASYM}* using Taylor series with *khL* as perturbation

$$P_{ASYM} = P_{in} \sin^2(khL) + P_{in}khL \frac{\partial}{\partial(k\Delta L)} \sin^2(k\Delta L) + \cdots$$

- What value of $k\Delta L$ makes derivative maximum? (Ans. $\pi/4$)
- *P_{ASYM}* ≈ <sup>*P_{in}*/₂(1 + 2*khL*); Laser intensity fluctuations swamps small signal (*khL*) term ⇒ Linear region: bad!
 </sup>

Null region operation

- At null point, $k\Delta L = 0$ so that $P_{ASYM} = P_{in} \sin^2(khL) \approx k^2 h^2 L^2$
- Since h

 M²
 Makes detection a challenge
- Phasor analysis shows field exiting ASYM port is in quadrature (π/2) with respect to incident light
- Here beamsplitter and mirrors are assumed to provide 180° phase shift upon reflection

E. D. Black and R. N. Gutenkust, AJP, 71(4), 2003

Signal extraction using lock-in

- Modulate carrier to generate sidebands at λ_{mod}
- Make FP cavity dark only to carrier fields (Schnupp asymmetry)

Signal extraction using lock-in

$$\begin{split} k_{\pm} &= \frac{\omega \pm \Omega}{c} = 2 \,\pi \left(\frac{1}{\lambda} \pm \frac{1}{\lambda_{\text{mod}}} \right) \\ t_{\pm} &= i \, \sin \! \left[2 \,\pi \left(\frac{\ell_x - \ell_y}{\lambda} \pm \frac{\ell_x - \ell_y}{\lambda_{\text{mod}}} \right) \right] e^{i k_{\pm} (\ell_x + \ell_y)} \\ t_{\pm} &= \mp i \, \sin \! \left[2 \,\pi \left(\frac{\Delta \ell}{\lambda_{\dots,s}} \right) \right] e^{i [(\omega \pm \Omega)/c] (\ell_x + \ell_y)} \\ P_{\text{out}} &= P_{\text{in}} J_0^2(\beta) 4 \,\pi^2 \frac{\ell^2}{\lambda} h^2 + 2 P_{\text{in}} J_1^2(\beta) \sin^2 \! \left(2 \,\pi \frac{\Delta \ell}{\lambda_{\text{mod}}} \right) \\ &+ 2 P_{\text{in}} J_1^2(\beta) \sin^2 \! \left(2 \,\pi \frac{\Delta \ell}{\lambda_{\text{mod}}} \right) \cos \! \left(2 \,\Omega t + 8 \,\pi \frac{\ell}{\lambda_{\text{mod}}} \right) \\ &+ P_{\text{in}} J_0(\beta) J_1(\beta) 4 \,\pi \frac{\ell}{\lambda} h \, \sin \! \left(2 \,\pi \frac{\Delta \ell}{\lambda_{\text{mod}}} \right) \\ &\times \cos \! \left(\Omega t + 4 \,\pi \frac{\ell}{\lambda_{\text{mod}}} \right). \end{split}$$

Mirror reflection mismatch

• In practice
$$r_{X,Y} = r \pm \frac{\delta r}{2}$$

• $P_{ASYM} = \frac{1}{4} \left[\left(r^2 - \frac{\delta r^2}{4r^2} \right) \cos^2\left(k\delta L\right) + \frac{\delta r^2}{4r^2} \right] P_{in}$

G. Vajente, Chap. 3, Advanced interferometers and the search for gravitational waves

pradeepk@iitk.ac.in (IIT Kanpur)

Fabry-Perot cavity: layout

• Formed by two mirrors, $M_1 = \{r_i, t_i\}$ and $M_2 = \{r_e, t_e\}$, $t_e \approx 1$ • $-r_i r_e e^{-j2kL} E_{FP}$ fed back to cavity

$$E_{FP} = t_i E_{in} - r_i r_e e^{-j2kL} E_{FP} = \frac{t_i E_{in}}{1 + r_i r_e e^{-j2kL}}$$

• Output field: $E_{out} = t_e e^{-jKL} E_{FP} = \frac{t_i t_e E_{in}}{1 + r_i r_e e^{-j2kL}}$

FP cavity: characterization

- At resonance, $e^{-j2kL} = -1$ and $P_{FP} = P_{in} \frac{(t_i t_e)^2}{(1-r_i r_e)^2} = G_{FP} P_{in}$
- Resonance condition implies multiple peaks spaced half-wavelength apart defining *free-spectral range* $FSR = \frac{c}{2I}$

• With detuning
$$\delta L$$
, $P_{FP} = \frac{t_i^2}{(1-r_i r_e)^2 + 4r_i r_e \sin^2(k \delta L)} P_{in}$

•
$$\delta L_{FWHM} = \frac{\lambda}{2F}$$
, where $F = \frac{\pi \sqrt{r_i r_e}}{1 - r_i r_e}$ is cavity finesse

$$P_{FP} = rac{G_{FP}}{1 + \left(rac{2\mathcal{F}}{\pi}
ight)^2 \sin^2(k\delta L)} P_{in}$$

• Typical finesse values are >50

FP cavity: detuning

• In this plot, $\mathcal{F} = 30$ and $r_i = 0.9$. Calculate r_e and t_i

FP cavity: reflection

G. Vajente, Chap. 3, Advanced interferometers and the search for gravitational waves

pradeepk@iitk.ac.in (IIT Kanpur)

FP cavity: reflection

- When r_i = r_e, at resonance, light is completely transmitted (critical coupling)
- When r_i < r_e, at resonance, light is reflected mostly but more importantly phase is highly sensitive to length variations (over coupling)
- To implement power recycling, FP cavities are operated in over coupling mode

Mirror motion

- Mirror motion due to GW perturbation results in sidebands
- Displacement $x(t) = x_0 \cos(\Omega_s t)$ yields phase shift $\phi_s = 2kx(t)$ $E_4 = jr_e e^{-j\phi_s} E_3 \approx jr_e E_3 + r_e \phi_s E_3 = jr_e E_3 + kr_e x_0 \left(e^{j\Omega_s t} + e^{-j\Omega_s t}\right) E_3$

• Sideband amplitude at resonance: $E_4(f_s) = \frac{kx_0E_3(0)}{1-r_ir_ee^{-j2(\Omega_s/c)L}}$

$$E_{ref} = \left[j \sqrt{G_{FP}} k r_e x_0 \frac{j t_i e^{-j(\Omega_s/c)L}}{1 - r_i r_e e^{-j2(\Omega_s/c)L}} \right] E_{in}$$

FP cavity: Frequency response

• For GW frequencies $\Omega_s L/c \ll 1$ so that $E_{ref} = -kr_e x_0 \frac{G_{FP}}{1+j\frac{f_s}{i_p}} E_{in}$,

where $f_{p} = \frac{c}{4LF}$ is critical frequency

- This is low-pass filter transfer function with low-frequency gain of kr_ex₀G_{FP} and 3-dB bandwidth f_p
- Since $f_p \propto \mathcal{F}^{-1}$, high finesse leads to lower bandwidth (why?)

Simulating FP cavities using Finesse

- Finesse is a frequency-domain simulation tool for interferometric detectors
- Easy to use and free!
- Latest version 2.0 released

Paraxial wave equation

 Practical optical beams are not plane waves; they are described by paraxial wave equation

•
$$(\nabla^2 + k^2)E(x, y, z) = 0$$
 with $E(x, y, z) = e^{ikz}A(x, y, z)$

• Paraxial approximation: $\left|\frac{\partial^2 A}{\partial z^2}\right| \ll \frac{2\pi}{\lambda} A$ gives equation $\left(\partial_x^2 + \partial_y^2 + 2jk\partial_z\right) A = 0$ describing propagation of beams

$$A(r, z) = \frac{1}{\sqrt{1 + \frac{z^2}{z_R^2}}} e^{-\frac{x^2 + y^2}{w^2(z)}} e^{-ik\frac{x^2 + y^2}{2R(z)}} e^{i\arctan\frac{z}{z_R}} e^{-ik}$$
$$w(z) = w_0 \sqrt{1 + \frac{z^2}{z_R^2}} \qquad R(z) = z \left(1 + \frac{z_R^2}{z^2}\right)$$
$$z_R = \frac{kw_0^2}{2} \qquad \phi_G = -\arctan\frac{z}{z_R}$$

Gaussian beams

- Circularly symmetric with minimum transverse width w₀ at z = 0 known as beam waist
- w(z) grows with z; at $z = z_R$, Rayleigh distance, $w(z) = \sqrt{2}w_0$

$$A(r, z) = \frac{1}{\sqrt{1 + \frac{z^2}{z_R^2}}} e^{-\frac{x^2 + y^2}{w^2(z)}} e^{-ik\frac{x^2 + y^2}{2R(z)}} e^{i\arctan\frac{z}{z_R}} e^{-ikz}$$
$$w(z) = w_0 \sqrt{1 + \frac{z^2}{z_R^2}} \qquad R(z) = z \left(1 + \frac{z_R^2}{z^2}\right)$$
$$z_R = \frac{kw_0^2}{2} \qquad \phi_G = -\arctan\frac{z}{z_R}$$

Higher-order modes

- Different solutions (modes) of paraxial equation; not necessarily cylindrical symmetric
- Common modes: Hermite-Gaussian or transverse electro-magnetic modes (TEM_{mn})

$$\text{TEM}_{mn}(x, y, z) = N_{mn}(z)e^{ikz}H_m\left(\frac{\sqrt{2}x}{w(z)}\right)H_n\left(\frac{\sqrt{2}y}{w(z)}\right)$$
$$e^{-i(n+m+1)\arctan(z/z_R)}e^{ik\frac{x^2+y^2}{2R(z)}}e^{-\frac{x^2+y^2}{w^2(z)}}$$

$$N_{mn}(z) = \sqrt{\frac{2}{\pi w(z)^2 \, 2^{n+m} m! n!}}$$

$$H_n(t) = e^{t^2} \left(-\frac{d}{dt} \right)^n e^{-t^2}$$

Higher-order modes

TEM _{1,0}

TEM_{0,1}

pradeepk@iitk.ac.in (IIT Kanpur)

Resonators and beams

 Resonators cannot have plane surfaces (Why?); Stability of resonators depend on surface shapes

pradeepk@iitk.ac.in (IIT Kanpur)