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Detecting optical signals

Sinusoidal optical signals characterized by amplitude/power,
frequency, phase, and polarization
Photodetector (PD): Produces current proportional to incident
optical power Iph = RPopt R=PD responsivity

PDs are insensitive to phase of optical waves
How to measure phase then? Using an interferometer
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What is an interferometer?

Interferometers converts phase to intensity/power
In GW detector context

optical phase difference ∝ differential strain: δφ = GδL
converts δφ to intensity/power
Goal is to make G large

φm =phase to be measured, φr =reference phase
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Michelson interferometer layout

Consists of light source, two arms with end mirrors, and
beamsplitter

Michelson interferometer from 1881; simplified optical layout
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Electromagnetic fundamentals

Maxwell’s equations

Classical light is electromagnetic phenomena; described by
Maxwell’s equations

Faraday’s law: ∇× ~E(~r , t) = − ∂
∂t
~B(~r , t)

Ampere-Maxwell law: ∇× ~H(~r , t) = ∂
∂t
~D(~r , t) + ~J(~r , t)

Gauss’s laws: ∇ · ~D(~r , t) = ρ(~r , t) and ∇ · ~B(~r , t) = 0
Constitutive relations ~D = ε~E and ~B = µ~H encode medium
properties

Harmonic solutions: ~E(~r , t) = ~E0 cos(ωt + φ(~r)) = Re[ ~E0ejφ(~r)ejωt ]

~E = ~E0ejφ(~r) is called a phasor
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Electromagnetic fundamentals

Phasor representation

Complex number, represented as
a vector in complex plane
Time-domain:
E cos(ωt + φ)→ Eejφ = E :
Phasor
Phasor: E →Re[Eejωt ]:
Time-domain
Exercise: Obtain phasor form of
x̂ cos(ωt − kz) + ŷ2 sin(ωt − kz)

E. D. Black and R. N. Gutenkust, AJP, 71(4), 2003
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Electromagnetic fundamentals

Describing optical waves: Plane wave description

From Maxwell’s equations we obtain wave equation

∇2~E~r + ω2µε~E(~r) = 0

Optical waves propagating in z−direction; ~E(~r) = ~ET (x , y)Ae−jkz

k = ω/c = 2π/λ is phase constant
~ET (x , y) = transverse field distribution
Plane wave: ~ET (x , y) independent of x and y coordinates
Longitudinal part Ae−jkz is a complex number at each z
~ET determines polarization of wave

Normalize such that |A|2 is optical power
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Electromagnetic fundamentals

Polarization of light

Defined as orientation of electric
field vector ~E in space

Linear polarization: ~E
orientation constant with time
Elliptical polarization: ~E
orientation varies with time

Jones vector:
(

Ax
Ay

)
Optical elements such as
quarter-wave and half-wave
plates can be used to change
polarization

G. R. Fowles, Introduction to Modern Optics
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Describing optical elements

Describing mirrors

Mirrors are used extensively in
GW detectors and other optical
systems
Incident light partially reflected
and transmitted by mirror
Flexibility to choose phase of
reflection and transmission
coefficients; φr = π/2 or π

Mirror matrix is unitary

M =

(
jr t
t jr

)
MM† = I

E−1 = rE+
1 + t ′E−2

E+
2 = tE+

1 + r ′E−2
|r | = |r ′| and |t | = |t ′|
r∗t ′ + t∗r ′ = 0 and
|r |2 + |t |2 = 1
R = |r |2 reflectivity and
T = |t |2 transmittivity
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Describing optical elements

Reflection and transmission coefficients

Depend upon polarization of
incident light, angle of incidence
w.r.t. normal to interface, and
refractive index on two sides of
interface
TE case: Electric field vectors are
perpendicular to plane of
incidence
Coefficients can be derived by
applying boundary conditions

G. R. Fowles, Introduction to Modern Optics
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Describing optical elements

Boundary conditions

At interface, vectors field vectors
satisfy following conditions

Tangential E−field and normal
B−field are continuous across
boundary
Tangential H−field and normal
D−field are discontinuous by
amount of current and charge
densities respectively

In reflection coefficient
calculation for TE case

E + E ′ = E ′′

−H cos(θ) + H ′ cos(θ) =
−H ′′ cos(φ)
E/H = η/

√
ε G. R. Fowles, Introduction to Modern Optics
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Describing optical elements

Reflection and transmission coefficients

TM case: Magnetic field vectors
are perpendicular to plane of
incidence
Coefficients can be derived by
applying boundary conditions

G. R. Fowles, Introduction to Modern Optics
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Describing optical elements

Reflection coefficients of TE and TM polarizations

Zero reflection in TM case when light is incident at Brewster’s
angle
This plot: n1 = 1 (air) and n2 = 1.5. What happens if n1 > n2?
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Describing optical elements

Describing lossy mirrors

Real mirrors are lossy due to absorption by mirror material
Reflectance+Transmittance+loss=1, |r |2 + |t |2 + L = 1
Further complication due to fluctuation-dissipation theorem which
states that loss is accompanied by additional noise injected into
system
ε = absorption coefficient

Danilishin and Khalili, LRR, 15 (2012)
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Describing optical elements

Describing beamsplitter

I/O relation described by same
matrix M
Types: polarizing and
non-polarizing
Common 50:50 beamsplitter:

B = 1√
2

(
j 1
1 j

)
Delay: A(L) = A(0)e−jk0nL,
accumulates phase delay k0nL
w.r.t z = 0
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Michelson interferometer

Layout and analysis of Michelson interferometer

Beamsplitter splits laser light into
two parts; one travels towards
MX other towards MY

After reflection at mirrors Mx ,y ,
beams recombine at beamsplitter
A2 = j√

2
A1, A5 = jrY e−j2kLY A2

A6 = 1√
2
A1, A9 = jrX e−j2kLX A6

Interferometer output amplitudes

ASYM port: AASYM = −1
2

(
rX e−j2kLX − rY e−j2kLY

)
A1

SYM port: ASYM = j
2

(
rX e−j2kLX + rY e−j2kLY

)
A1
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Michelson interferometer

Matrix analysis of Michelson interferometer

Input vector at port 1: ~ψ = [A1 0]T

Propagation+reflection+propagation towards beamsplitter

described by matrix P =

(
jrX e−j2kLX 0

0 jrY e−j2kLY

)
(Try) Multiply three matrices with input vector: B−1PB ~ψ to get
AASYM and ASYM
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Michelson interferometer

Effect of gravitational wave

GW perturbs mirrors and induces changes in reflected light
A5 → rY e−j2kLY e−j2kLY h(t)/2A2, h(t) induces phase modulation
Harmonic GW, h(t) = h0 cos(ωgw t) creates sidebands

A5 = A2(0)

(
1− jm

2
ejωgw t − jm

2
e−jωgw t

)
More about phase modulation later
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Michelson interferometer

Understanding interferometer response

ASYM port amplitude: AASYM = −1
2

(
rX e−j2kLX − rY e−j2kLY

)
A1

Assume perfectly reflecting mirrors without loss: rX = rY = 1
ASYM port power PASYM = Pin sin2(k∆L), ∆L = LX − LY
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Michelson interferometer

Operating in linear region

Under GW perturbation, LX → LX + δlX and LY → LY + δlY
Amplitude strain h = δlX−δlY

L , L = LX +LY
2 is avg. length

PASYM = Pin sin2(k∆L + khL). What should be k∆L for operation
in linear region?
Expand PASYM using Taylor series with khL as perturbation

PASYM = Pin sin2(khL) + PinkhL
∂

∂(k∆L)
sin2(k∆L) + · · ·

What value of k∆L makes derivative maximum? (Ans. π/4)
PASYM ≈ Pin

2 (1 + 2khL); Laser intensity fluctuations swamps small
signal (khL) term =⇒ Linear region: bad!
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Michelson interferometer

Null region operation

At null point, k∆L = 0 so that
PASYM = Pin sin2(khL) ≈ k2h2L2

Since h� 1, h2 � 1 makes
detection a challenge
Phasor analysis shows field
exiting ASYM port is in
quadrature (π/2) with respect to
incident light
Here beamsplitter and mirrors
are assumed to provide 180◦

phase shift upon reflection

E. D. Black and R. N. Gutenkust, AJP, 71(4), 2003
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Michelson interferometer

Signal extraction using lock-in

Modulate carrier to generate sidebands at λmod

Make FP cavity dark only to carrier fields (Schnupp asymmetry)
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Michelson interferometer

Signal extraction using lock-in
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Michelson interferometer

Mirror reflection mismatch

In practice rX ,Y = r ± δr
2

PASYM = 1
4

[(
r2 − δr2

4r2

)
cos2 (kδL) + δr2

4r2

]
Pin

G. Vajente, Chap. 3, Advanced interferometers and the search for gravitational waves
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Fabry-Perot cavity

Fabry-Perot cavity: layout

Formed by two mirrors, M1 = {ri , ti} and M2 = {re, te}, te ≈ 1
−ri ree−j2kLEFP fed back to cavity

EFP = tiEin − ri ree−j2kLEFP =
tiEin

1 + ri ree−j2kL

Output field: Eout = tee−jKLEFP = ti teEin
1+ri ree−j2kL
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Fabry-Perot cavity

FP cavity: characterization

At resonance, e−j2kL = −1 and PFP = Pin
(ti te)2

(1−ri re)2 = GFPPin

Resonance condition implies multiple peaks spaced
half-wavelength apart defining free-spectral range FSR = c

2L

With detuning δL, PFP =
t2
i

(1−ri re)2+4ri re sin2(kδL)
Pin

δLFWHM = λ
2F , where F =

π
√

ri re
1−ri re

is cavity finesse

PFP =
GFP

1 +
(2F
π

)2
sin2(kδL)

Pin

Typical finesse values are >50
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Fabry-Perot cavity

FP cavity: detuning

In this plot, F = 30 and ri = 0.9. Calculate re and ti
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Fabry-Perot cavity

FP cavity: reflection

Eref = j ri +re(t2
i +r2

i )e−j2kL

1+ri ree−j2kL Ein

In this plot, F = 30 and ri = 0.9. Calculate re and ti

G. Vajente, Chap. 3, Advanced interferometers and the search for gravitational waves
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Fabry-Perot cavity

FP cavity: reflection

When ri = re, at resonance, light is completely transmitted
(critical coupling)
When ri < re, at resonance, light is reflected mostly but more
importantly phase is highly sensitive to length variations (over
coupling)
To implement power recycling, FP cavities are operated in over
coupling mode
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Fabry-Perot cavity

Mirror motion

Mirror motion due to GW perturbation results in sidebands
Displacement x(t) = x0 cos(Ωst) yields phase shift φs = 2kx(t)
E4 = jree−jφsE3 ≈ jreE3 + reφsE3 = jreE3 +krex0

(
ejΩs t + e−jΩs t)E3

Sideband amplitude at resonance: E4(fs) = kx0E3(0)

1−ri ree−j2(Ωs/c)L

Eref =

[
j
√

GFPkrex0
jtie−j(Ωs/c)L

1− ri ree−j2(Ωs/c)L

]
Ein
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Fabry-Perot cavity

FP cavity: Frequency response

For GW frequencies ΩsL/c � 1 so that Eref = −krex0
GFP

1+j fs
fp

Ein,

where fp = c
4LF is critical frequency

This is low-pass filter transfer function with low-frequency gain of
krex0GFP and 3-dB bandwidth fp
Since fp ∝ F−1, high finesse leads to lower bandwidth (why?)
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Fabry-Perot cavity

Simulating FP cavities using Finesse

Finesse is a frequency-domain simulation tool for interferometric
detectors
Easy to use and free!
Latest version 2.0 released
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Higher-order transverse modes

Paraxial wave equation

Practical optical beams are not plane waves; they are described
by paraxial wave equation
(∇2 + k2)E(x , y , z) = 0 with E(x , y , z) = ejkzA(x , y , z)

Paraxial approximation: |∂2A
∂z2 | � 2π

λ A gives equation(
∂2

x + ∂2
y + 2jk∂z

)
A = 0 describing propagation of beams
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Higher-order transverse modes

Gaussian beams

Circularly symmetric with minimum transverse width w0 at z = 0
known as beam waist
w(z) grows with z; at z = zR, Rayleigh distance, w(z) =

√
2w0
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Higher-order transverse modes

Higher-order modes

Different solutions (modes) of paraxial equation; not necessarily
cylindrical symmetric
Common modes: Hermite-Gaussian or transverse
electro-magnetic modes (TEMmn)
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Higher-order transverse modes

Higher-order modes
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Higher-order transverse modes

Resonators and beams

Resonators cannot have plane surfaces (Why?); Stability of
resonators depend on surface shapes
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