Optics of GW detectors Review of optics

Pradeep Kumar K

Center for Lasers \& Photonics Indian Institute of Technology Kanpur

Outline

(1) Electromagnetic fundamentals

2 Describing optical elements
(3) Michelson interferometer
4) Fabry-Perot cavity
(5) Higher-order transverse modes

Detecting optical signals

- Sinusoidal optical signals characterized by amplitude/power, frequency, phase, and polarization
- Photodetector (PD): Produces current proportional to incident optical power $I_{p h}=\mathcal{R} P_{\text {opt }} \mathcal{R}=P D$ responsivity
- PDs are insensitive to phase of optical waves
- How to measure phase then? Using an interferometer

What is an interferometer?

- Interferometers converts phase to intensity/power
- In GW detector context
- optical phase difference \propto differential strain: $\delta \phi=G \delta L$
- converts $\delta \phi$ to intensity/power
- Goal is to make G large

- $\phi_{m}=$ phase to be measured, $\phi_{r}=$ reference phase

Michelson interferometer layout

- Consists of light source, two arms with end mirrors, and beamsplitter

- Michelson interferometer from 1881; simplified optical layout

Maxwell's equations

- Classical light is electromagnetic phenomena; described by Maxwell's equations
- Faraday's law: $\nabla \times \vec{E}(\vec{r}, t)=-\frac{\partial}{\partial t} \vec{B}(\vec{r}, t)$
- Ampere-Maxwell law: $\nabla \times \vec{H}(\vec{r}, t)=\frac{\partial}{\partial t} \vec{D}(\vec{r}, t)+\vec{J}(\vec{r}, t)$
- Gauss's laws: $\nabla \cdot \vec{D}(\vec{r}, t)=\rho(\vec{r}, t)$ and $\nabla \cdot \vec{B}(\vec{r}, t)=0$
- Constitutive relations $\vec{D}=\epsilon \vec{E}$ and $\vec{B}=\mu \vec{H}$ encode medium properties
- Harmonic solutions: $\vec{E}(\vec{r}, t)=\vec{E}_{0} \cos (\omega t+\phi(\vec{r}))=\operatorname{Re}\left[\vec{E}_{0} e^{j \phi(\vec{r})} e^{j \omega t}\right]$
- $\underline{\vec{E}}=\vec{E}_{0} e^{j \phi(\vec{r})}$ is called a phasor

Phasor representation

- Complex number, represented as a vector in complex plane
- Time-domain:
$E \cos (\omega t+\phi) \rightarrow E e^{j \phi}=\underline{E}:$
Phasor
- Phasor: $\underline{E} \rightarrow \operatorname{Re}\left[\underline{E} e^{j \omega t}\right]:$

Time-domain

- Exercise: Obtain phasor form of $\hat{x} \cos (\omega t-k z)+\hat{y} 2 \sin (\omega t-k z)$

E. D. Black and R. N. Gutenkust, AJP, 71(4), 2003

Describing optical waves: Plane wave description

- From Maxwell's equations we obtain wave equation

$$
\nabla^{2} \overrightarrow{\vec{E}} \vec{r}+\omega^{2} \mu \epsilon \underline{\vec{E}}(\vec{r})=0
$$

- Optical waves propagating in z-direction; $\overrightarrow{\underline{E}}(\vec{r})=\overrightarrow{\underline{E}}_{T}(x, y) A e^{-j k z}$
- $k=\omega / c=2 \pi / \lambda$ is phase constant
- $\overrightarrow{\underline{E}}_{T}(x, y)=$ transverse field distribution
- Plane wave: $\vec{E}_{T}(x, y)$ independent of x and y coordinates
- Longitudinal part $A e^{-j k z}$ is a complex number at each z
- \vec{E}_{T} determines polarization of wave
- Normalize such that $|A|^{2}$ is optical power

Polarization of light

- Defined as orientation of electric field vector \vec{E} in space
- Linear polarization: \vec{E} orientation constant with time
- Elliptical polarization: \vec{E} orientation varies with time
- Jones vector: $\binom{A_{x}}{A_{y}}$
- Optical elements such as quarter-wave and half-wave plates can be used to change polarization

G. R. Fowles, Introduction to Modern Optics

Describing mirrors

- Mirrors are used extensively in GW detectors and other optical systems
- Incident light partially reflected and transmitted by mirror

- Flexibility to choose phase of reflection and transmission coefficients; $\phi_{r}=\pi / 2$ or π

Describing mirrors

- Mirrors are used extensively in GW detectors and other optical systems
- Incident light partially reflected and transmitted by mirror

- Flexibility to choose phase of reflection and transmission coefficients; $\phi_{r}=\pi / 2$ or π

Mirror matrix is unitary

$$
M=\left(\begin{array}{cc}
j r & t \\
t & j r
\end{array}\right) \quad M M^{\dagger}=I
$$

- $E_{1}^{-}=r E_{1}^{+}+t^{\prime} E_{2}^{-}$
- $E_{2}^{+}=t E_{1}^{+}+r^{\prime} E_{2}^{-}$
- $|r|=\left|r^{\prime}\right|$ and $|t|=\left|t^{\prime}\right|$
- $r^{*} t^{\prime}+t^{*} r^{\prime}=0$ and
$|r|^{2}+|t|^{2}=1$
- $R=|r|^{2}$ reflectivity and
$T=|t|^{2}$ transmittivity

Reflection and transmission coefficients

- Depend upon polarization of incident light, angle of incidence w.r.t. normal to interface, and refractive index on two sides of interface
- TE case: Electric field vectors are perpendicular to plane of incidence
- Coefficients can be derived by applying boundary conditions

[^0]
Boundary conditions

- At interface, vectors field vectors satisfy following conditions
- Tangential E-field and normal B-field are continuous across boundary
- Tangential H -field and normal D-field are discontinuous by amount of current and charge densities respectively
- In reflection coefficient calculation for TE case
- $E+E^{\prime}=E^{\prime \prime}$
- $-H \cos (\theta)+H^{\prime} \cos (\theta)=$ $-H^{\prime \prime} \cos (\phi)$
- $E / H=\eta / \sqrt{\epsilon}$

Reflection and transmission coefficients

- TM case: Magnetic field vectors are perpendicular to plane of incidence
- Coefficients can be derived by applying boundary conditions

G. R. Fowles, Introduction to Modern Optics

Reflection coefficients of TE and TM polarizations

- Zero reflection in TM case when light is incident at Brewster's angle
- This plot: $n_{1}=1$ (air) and $n_{2}=1.5$. What happens if $n_{1}>n_{2}$?

Describing lossy mirrors

- Real mirrors are lossy due to absorption by mirror material
- Reflectance+Transmittance+loss $=1,|r|^{2}+|t|^{2}+L=1$
- Further complication due to fluctuation-dissipation theorem which states that loss is accompanied by additional noise injected into system
- $\epsilon=$ absorption coefficient

Describing beamsplitter

- I/O relation described by same matrix M
- Types: polarizing and non-polarizing
- Common 50:50 beamsplitter: $B=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}\mathrm{j} & 1 \\ 1 & \mathrm{j}\end{array}\right)$
- Delay: $A(L)=A(0) e^{-j k_{0} n L}$, accumulates phase delay $k_{0} n L$ w.r.t $z=0$

Layout and analysis of Michelson interferometer

- Beamsplitter splits laser light into two parts; one travels towards M_{X} other towards M_{Y}
- After reflection at mirrors $\mathrm{M}_{x, y}$, beams recombine at beamsplitter
- $A_{2}=\frac{j}{\sqrt{2}} A_{1}, A_{5}=j r_{Y} e^{-j 2 k L_{Y}} A_{2}$
- $A_{6}=\frac{1}{\sqrt{2}} A_{1}, \quad A_{9}=j r_{X} e^{-j 2 k L_{X}} A_{6}$

Interferometer output amplitudes

ASYM port: $A_{A S Y M}=-\frac{1}{2}\left(r_{X} e^{-j 2 k L_{X}}-r_{Y} e^{-j 2 k L_{Y}}\right) A_{1}$
SYM port: $A_{S Y M}=\frac{j}{2}\left(r_{X} e^{-j 2 k L_{X}}+r_{Y} e^{-j 2 k L_{Y}}\right) A_{1}$

Matrix analysis of Michelson interferometer

- Input vector at port 1: $\vec{\psi}=\left[\begin{array}{ll}A_{1} & 0\end{array}\right]^{T}$
- Propagation+reflection+propagation towards beamsplitter
described by matrix $P=\left(\begin{array}{cc}j r_{X} e^{-j 2 k L_{X}} & 0 \\ 0 & j r_{Y} e^{-j 2 k L_{Y}}\end{array}\right)$
- (Try) Multiply three matrices with input vector: $B^{-1} P B \vec{\psi}$ to get $A_{\text {ASYM }}$ and $A_{S Y M}$

Effect of gravitational wave

- GW perturbs mirrors and induces changes in reflected light
- $A_{5} \rightarrow r_{Y} e^{-j 2 k L_{Y}} e^{-j 2 k L_{Y} h(t) / 2} A_{2}, h(t)$ induces phase modulation
- Harmonic GW, $h(t)=h_{0} \cos \left(\omega_{g w} t\right)$ creates sidebands

$$
A_{5}=A_{2}(0)\left(1-\frac{j m}{2} e^{j \omega_{g w} t}-\frac{j m}{2} e^{-j \omega_{g w} t}\right)
$$

- More about phase modulation later

Understanding interferometer response

- ASYM port amplitude: $A_{A S Y M}=-\frac{1}{2}\left(r_{X} e^{-j 2 k L_{X}}-r_{Y} e^{-j 2 k L_{Y}}\right) A_{1}$
- Assume perfectly reflecting mirrors without loss: $r_{X}=r_{Y}=1$
- ASYM port power $P_{A S Y M}=P_{i n} \sin ^{2}(k \Delta L), \Delta L=L_{X}-L_{Y}$

Operating in linear region

- Under GW perturbation, $L_{X} \rightarrow L_{X}+\delta I_{X}$ and $L_{Y} \rightarrow L_{Y}+\delta I_{Y}$
- Amplitude strain $h=\frac{\delta I_{X}-\delta / Y}{L}, L=\frac{L_{X}+L_{Y}}{2}$ is avg. length
- $P_{A S Y M}=P_{\text {in }} \sin ^{2}(k \Delta L+k h L)$. What should be $k \Delta L$ for operation in linear region?
- Expand $P_{A S Y M}$ using Taylor series with $k h L$ as perturbation

$$
P_{A S Y M}=P_{i n} \sin ^{2}(k h L)+P_{i n} k h L \frac{\partial}{\partial(k \Delta L)} \sin ^{2}(k \Delta L)+\cdots
$$

- What value of $k \Delta L$ makes derivative maximum? (Ans. $\pi / 4$)
- $P_{A S Y M} \approx \frac{P_{\text {in }}}{2}(1+2 k h L)$; Laser intensity fluctuations swamps small signal $(k h L)$ term \Longrightarrow Linear region: bad!

Null region operation

- At null point, $k \Delta L=0$ so that $P_{A S Y M}=P_{\text {in }} \sin ^{2}(k h L) \approx k^{2} h^{2} L^{2}$
- Since $h \ll 1, h^{2} \ll 1$ makes detection a challenge
- Phasor analysis shows field exiting ASYM port is in quadrature ($\pi / 2$) with respect to incident light
- Here beamsplitter and mirrors are assumed to provide 180° phase shift upon reflection

Signal extraction using lock-in

- Modulate carrier to generate sidebands at $\lambda_{\text {mod }}$
- Make FP cavity dark only to carrier fields (Schnupp asymmetry)

Signal extraction using lock-in

$$
\begin{aligned}
& k_{ \pm}=\frac{\omega \pm \Omega}{c}=2 \pi\left(\frac{1}{\lambda} \pm \frac{1}{\lambda_{\mathrm{mod}}}\right) \\
& t_{ \pm}=i \sin \left[2 \pi\left(\frac{\ell_{x}-\ell_{y}}{\lambda} \pm \frac{\ell_{x}-\ell_{y}}{\lambda_{\bmod }}\right)\right] e^{i k_{ \pm}\left(\ell_{x}+\ell_{y}\right)} \\
& t_{ \pm}=\mp i \sin \left[2 \pi\left(\frac{\Delta \ell}{\lambda_{\ldots, .}}\right)\right] e^{i[(\omega \pm \Omega) / c]\left(\ell_{x}+\ell_{y}\right)} . \\
& P_{\text {out }}=P_{\mathrm{in}} J_{0}^{2}(\beta) 4 \pi^{2} \frac{\ell^{2}}{\lambda} h^{2}+2 P_{\mathrm{in}} J_{1}^{2}(\beta) \sin ^{2}\left(2 \pi \frac{\Delta \ell}{\lambda_{\text {mod }}}\right) \\
& +2 P_{\mathrm{in}} J_{1}^{2}(\beta) \sin ^{2}\left(2 \pi \frac{\Delta \ell}{\lambda_{\mathrm{mod}}}\right) \cos \left(2 \Omega t+8 \pi \frac{\ell}{\lambda_{\mathrm{mod}}}\right) \\
& +P_{\text {in }} J_{0}(\beta) J_{1}(\beta) 4 \pi \frac{\ell}{\lambda} h \sin \left(2 \pi \frac{\Delta \ell}{\lambda_{\text {mod }}}\right) \\
& \times \cos \left(\Omega t+4 \pi \frac{\ell}{\lambda_{\text {mod }}}\right) \text {. }
\end{aligned}
$$

Mirror reflection mismatch

- In practice $r_{X, Y}=r \pm \frac{\delta r}{2}$
- $P_{A S Y M}=\frac{1}{4}\left[\left(r^{2}-\frac{\delta r^{2}}{4 r^{2}}\right) \cos ^{2}(k \delta L)+\frac{\delta r^{2}}{4 r^{2}}\right] P_{\text {in }}$

G. Vajente, Chap. 3, Advanced interferometers and the search for gravitational waves

Fabry-Perot cavity: layout

- Formed by two mirrors, $M_{1}=\left\{r_{i}, t_{i}\right\}$ and $M_{2}=\left\{r_{e}, t_{e}\right\}, t_{e} \approx 1$
- $-r_{i} r_{e} e^{-j 2 k L} E_{F P}$ fed back to cavity

$$
E_{F P}=t_{i} E_{i n}-r_{i} r_{e} e^{-j 2 k L} E_{F P}=\frac{t_{i} E_{i n}}{1+r_{i} r_{e} e^{-j 2 k L}}
$$

- Output field: $E_{o u t}=t_{e} e^{-j K L} E_{F P}=\frac{t_{i} t_{e} E_{i n}}{1+r_{i} r_{e} e^{-j 2 k L}}$

FP cavity: characterization

- At resonance, $e^{-j 2 k L}=-1$ and $P_{F P}=P_{i n} \frac{\left(t_{i} t_{e}\right)^{2}}{\left(1-r_{i} r_{e}\right)^{2}}=G_{F P} P_{i n}$
- Resonance condition implies multiple peaks spaced half-wavelength apart defining free-spectral range $F S R=\frac{c}{2 L}$
- With detuning $\delta L, P_{F P}=\frac{t_{i}^{2}}{\left(1-r_{i} r_{e}\right)^{2}+4 r_{i} r_{e} \sin ^{2}(k \delta L)} P_{\text {in }}$
- $\delta L_{F W H M}=\frac{\lambda}{2 \mathcal{F}}$, where $\mathcal{F}=\frac{\pi \sqrt{r_{i} r_{e}}}{1-r_{i} r_{e}}$ is cavity finesse

$$
P_{F P}=\frac{G_{F P}}{1+\left(\frac{2 \mathcal{F}}{\pi}\right)^{2} \sin ^{2}(k \delta L)} P_{i n}
$$

- Typical finesse values are >50

FP cavity: detuning

- In this plot, $\mathcal{F}=30$ and $r_{i}=0.9$. Calculate r_{e} and t_{i}

FP cavity: reflection

- $E_{r e f}=j \frac{r_{i}+r_{e}\left(t_{i}^{2}+r_{i}^{2}\right) e^{-j 2 k L}}{1+r_{i} r_{e} e^{-j 2 k L}} E_{i n}$
- In this plot, $\mathcal{F}=30$ and $r_{i}=0.9$. Calculate r_{e} and t_{i}
G. Vajente, Chap. 3, Advanced interferometers and the search for gravitational waves

FP cavity: reflection

- When $r_{i}=r_{e}$, at resonance, light is completely transmitted (critical coupling)
- When $r_{i}<r_{e}$, at resonance, light is reflected mostly but more importantly phase is highly sensitive to length variations (over coupling)
- To implement power recycling, FP cavities are operated in over coupling mode

Mirror motion

- Mirror motion due to GW perturbation results in sidebands
- Displacement $x(t)=x_{0} \cos \left(\Omega_{s} t\right)$ yields phase shift $\phi_{s}=2 k x(t)$ $E_{4}=j r_{e} e^{-j \phi_{s}} E_{3} \approx j r_{e} E_{3}+r_{e} \phi_{s} E_{3}=j r_{e} E_{3}+k r_{e} x_{0}\left(e^{j \Omega_{s} t}+e^{-j \Omega_{s} t}\right) E_{3}$
- Sideband amplitude at resonance: $E_{4}\left(f_{s}\right)=\frac{k x_{0} E_{3}(0)}{1-r_{i} r_{e} e^{-j 2\left(\Omega_{s} / c\right) L}}$

$$
E_{r e f}=\left[j \sqrt{G_{F P}} k r_{e} x_{0} \frac{j t_{i} e^{-j\left(\Omega_{s} / c\right) L}}{1-r_{i} r_{e} e^{-j 2\left(\Omega_{s} / c\right) L}}\right] E_{i n}
$$

FP cavity: Frequency response

- For GW frequencies $\Omega_{s} L / c \ll 1$ so that $E_{r e f}=-k r_{e} x_{0} \frac{G_{F p}}{1+j j_{s}^{t_{p}}} E_{i n}$, where $f_{p}=\frac{c}{4 L \mathcal{F}}$ is critical frequency
- This is low-pass filter transfer function with low-frequency gain of $k r_{e} x_{0} G_{F P}$ and 3-dB bandwidth f_{p}
- Since $f_{p} \propto \mathcal{F}^{-1}$, high finesse leads to lower bandwidth (why?)

Simulating FP cavities using Finesse

- Finesse is a frequency-domain simulation tool for interferometric detectors
- Easy to use and free!
- Latest version 2.0 released

Paraxial wave equation

- Practical optical beams are not plane waves; they are described by paraxial wave equation
- $\left(\nabla^{2}+k^{2}\right) E(x, y, z)=0$ with $E(x, y, z)=e^{j k z} A(x, y, z)$
- Paraxial approximation: $\left|\frac{\partial^{2} A}{\partial z^{2}}\right| \ll \frac{2 \pi}{\lambda} A$ gives equation $\left(\partial_{x}^{2}+\partial_{y}^{2}+2 j k \partial_{z}\right) A=0$ describing propagation of beams

$$
\begin{aligned}
& A(r, z)=\frac{1}{\sqrt{1+\frac{z^{2}}{z_{R}^{2}}}} e^{-\frac{x^{2}+y^{2}}{w^{2}(z)}} e^{-i k \frac{x^{2}+y^{2}}{2 R(z)}} e^{i \arctan \frac{z}{z_{R}}} e^{-i k z} \\
& w(z)=w_{0} \sqrt{1+\frac{z^{2}}{z_{R}^{2}}} \quad R(z)=z\left(1+\frac{z_{R}^{2}}{z^{2}}\right) \\
& z_{R}=\frac{k w_{0}^{2}}{2} \quad \phi_{G}=-\arctan \frac{z}{z_{R}}
\end{aligned}
$$

Gaussian beams

- Circularly symmetric with minimum transverse width w_{0} at $z=0$ known as beam waist
- $w(z)$ grows with z; at $z=z_{R}$, Rayleigh distance, $w(z)=\sqrt{2} w_{0}$

$$
\begin{aligned}
& A(r, z)=\frac{1}{\sqrt{1+\frac{z^{2}}{z_{R}^{2}}}} e^{-\frac{x^{2}+y^{2}}{w^{2}(z)}} e^{-i k \frac{x^{2}+y^{2}}{2 R(z)}} e^{i \arctan \frac{z}{z_{R}}} e^{-i k z} \\
& w(z)=w_{0} \sqrt{1+\frac{z^{2}}{z_{R}^{2}}} \quad R(z)=z\left(1+\frac{z_{R}^{2}}{z^{2}}\right) \\
& z_{R}=\frac{k w_{0}^{2}}{2} \quad \phi_{G}=-\arctan \frac{z}{z_{R}}
\end{aligned}
$$

Higher-order modes

- Different solutions (modes) of paraxial equation; not necessarily cylindrical symmetric
- Common modes: Hermite-Gaussian or transverse electro-magnetic modes (TEM ${ }_{m n}$)

$$
\begin{aligned}
& \operatorname{TEM}_{m n}(x, y, z)=N_{m n}(z) e^{i k z} H_{m}\left(\frac{\sqrt{2} x}{w(z)}\right) H_{n}\left(\frac{\sqrt{2} y}{w(z)}\right) \\
& e^{-i(n+m+1) \arctan (z / z R)} e^{i k \frac{x^{2}+y^{2}}{2 R(z)}} e^{-\frac{x^{2}+y^{2}}{w^{2}(z)}} \\
& N_{m n}(z)=\sqrt{\frac{2}{\pi w(z)^{2} 2^{n+m} m!n!}} \\
& H_{n}(t)=e^{t^{2}}\left(-\frac{d}{d t}\right)^{n} e^{-t^{2}}
\end{aligned}
$$

Higher-order modes

TEM $_{0,1}$

TEM $_{1,1}$

Resonators and beams

- Resonators cannot have plane surfaces (Why?); Stability of resonators depend on surface shapes

TEM $_{0,1}$
TEM $_{1,1}$

[^0]: G. R. Fowles, Introduction to Modern Optics

