
R.V. Rao 

Proc. of ASID ’06, 8-12 Oct, New Delhi 
 

496

Texture Analysis and Synthesis using Angular Wavelet Frames 

R. Venkateswara Rao, Sumana Gupta, IIT Kanpur 
sumana@iitk.ac.in 

 
Abstract: The paper describes a new method for 
texture analysis and synthesis using angular wavelet 
frames (AWF). The objective of using AWF is to improve 
the performance of existing wavelet based classification 
algorithms for textured images having dominant angular 
components, as well as the synthesis algorithms for 
textures with long range and non linear spatial 
correlation. The 2D AWF is constructed by frequency 
transformations of the prototype 1D perfect 
reconstruction filter bank (PRFB). Encouraging results 
have been obtained by this method. 
 
1. Introduction 
In recent years, the issue of texture analysis and synthesis 
has been extensively investigated. The methods based 
on discrete wavelet transform (DWT) and its variant the 
discrete wavelet frame (DWF) provide a precise and 
unifying framework for analysis and characterization of 
textures at different scales. However, as these methods 
decompose the frequency plane into four rectangular 
segments, the analysis of textures with dominant angular 
components is rather poor. In this paper we propose the 
construction of angular wavelet frames (AWF) to 
overcome this problem. We construct 2D AWF by using 
the combination of 2D circular and 2D angular 
transformed filters. The overall classification rate using 
the AWF method is higher than that of the DWT and 
DWF methods. This is because the AWF can capture the 
dominant angular components of the textures. For texture 
synthesis auto regressive (AR) image models have been 
largely used with some degree of success. The drawback 
of AR models is that it is sensitive to the choice of model 
order and the power spectra and auto correlation functions 
of the AR models do not always resemble those of original 
texture images. As a result there is considerable research 
interest in multi resolution/multi scale statistical image 
models [1-4] for texture synthesis. 
 
The basic idea is to construct a complex model from a 
number of simpler models that require reduced 
computational cost. In this paper we also propose an 
angular wavelet-based statistical model for texture 
synthesis using AWF and AR model. The synthesis 
results demonstrated that the proposed model is superior 
to DWT method especially for textures containing non-
linear and long-range correlation. 

 
In section 2, we give the definition of the filter banks and 
explain the method of constructing 2D angular wavelet 
frames using frequency transformations. We discuss the 
angular wavelet-AR model applied to texture, in section 3. 
In section 4, we describe the experimental results obtained 
on "Broadtz" textures. 
 
2. Construction  Of  AWF 
In this section, we characterize the perfect 
reconstruction filter banks (PRFB) underlying the 
definition of the discrete wavelet transforms, used in this 

work. We start with the prototype filters h and g, which 
satisfy the condition (1)    

                              

 
where H (z) and G (z) are the z - transforms of the 
prototype filters h and g. These prototype filters are then 
used to generate, in an iterative fashion, a sequence of  
filters of increasing width (indexed by i ) 
 

 

                                     (2) 
 
 
with the initial condition H0 (z) = 1. It can be easily 
shown that such sequences of filters also satisfy the  
identity 
 

 
and therefore, provide  a full coverage of the  
frequency domain. 
 
We use frequency transformation methods to construct a 
2D filter from a 1D filter. 2D filters are constructed 
using circular and angular transformations on 1D filters.  
Consider the transform  
 
                                              
 

           (4) 
The two transformations used are 
 
                                                                                                               

 
(5) 

Frequency supports of the above transformations are 
shown in the Fig.1a. 
 

 
 
 
 
 
 

 
 

Figure 1. Frequency    supports    of   Circular    and    
Angular Transformations 

 
 
 

tiontransformaangulara
tiontransformacircularT

−=

−+=

)/tan(*2
),(

12

2
2

2
121

ωω
ωωωω

(1)                             1(Z)G~G(Z)(Z)H~H(Z) =+

)()()(

)()()(
'

'

2
1

2
1

zHzGzG

zHzHzH

ii

ii

=

=

+

+

)3(1)(~)()(~)(
1
∑
=

=+
i

k

j
k

j
k

j
i

j
i eGeGeHeH ωωωω

),(21 21
)(),( ωωωωωω THH ==



R. V. Rao 

Proc. of ASID ’06, 8-12 Oct, New Delhi 
 

497

2.1. Construction of 2D Angular Wavelet Frames 
2.1.1. Decomposition at Level 1: To construct 2D angular 
wavelet frame based on 1D wavelet frame, we consider 
1D PRFB filters H(ω) and G(ω). 
 On applying the circular and angular 
transformations described in Equation (5) we 
obtain four filters Hc, Gc, Ha and Ga. 
 
 

 
 

           (6) 
 
 
 
 
 

Where the subscript 'c' and 'a' denotes circular and 
angular transformations respectively. A useful 
wavelet frame can be constructed with the analysis 
filters 
 

Fhh = HcHa;Fhg = HcGa;Fgh = GcHa;Fgg = GcGa;    (7)  
 
At the synthesis end, the conjugate filters are 
constructed using conjugates of the 1D filters in 
similar steps. The principle of this decomposition is 
illustrated in Fig. 2. The whole system of filters acts 
as an identity operator, i.e., the analysis and 
synthesis filters constitute a perfect reconstruction 
filter bank.  
 
Property:   The 2D analysis filters constructed by 
circular and angular   transformations   of   1D   
PRFB   along   with   their conjugates    at    the    
synthesis    end    constitute    a    perfect 
reconstruction filter bank [5]. 
 

 
Figure 2. One level Signal analysis and synthesis 
using the Angular Wavelet Frame decomposition 

 
2.1.2. Decomposition at Higher Level- Consider the 
pyramidal decomposition where the low-low region 
is decomposed into four regions. The set of 1D-
prototype filters, for the higher level of 
decoposition, is obtained using Equation (2). For 
level 2, we use H2 and G2 (i=1) to obtain 2D 
circular and angular transformed filters H2c, G2c, H2a 

and G2a. We consider the following combination of 
analysis filters: 
 
F2hh = H2c H2a; F2hg = H2c G2a; 
                                                                         (8) 
F2gh = G2c H2a; F2gg = G2c G2a;  
 
These four filters decompose the region supported 
by Fhh (HcHa) into four regions. They are used along 
with HcGa, GcHa and GcGa for the second level of 
decomposition. Using the pyramidal decomposition 
we obtain N = 1 + 3I (where I is the level of 
decomposition.) number of filters. We can also 
decompose each of the other regions of the 
frequency plane into four regions. This is called tree 
structured decomposition method. Using Equation 
(2) we can get decomposition in the low-low 
frequency region only. In order to decompose the 
other regions, we should modify Equation (2).For 
the case of level 2, consider the following four 
equations: 
 

HlH2(z)=H(z2)H(z) (9) 
  

H1G2(z) = G(z2)H(z)                             (10) 
 

G1H2(z) = H(z2)G(z)   (11) 
 

GlG2(z) = G(z2)G(z)    (12) 
 
The first two equations are the same as Equation (2) 
for i=1. Using circular and angular transformations 
on these four 1D filters we obtain 2D filters H1H2c, 
H1G2c, G1H2c, G1G2c, H1H2a , H1G2a , G1H2a and 
G1G2a . Useful wavelet frame can be constructed by 
using appropriate combination of these 2D filters. 
 
3. Model for Texture Synthesis 
3.1. Angular wavelet-AR model 
Let x be the texture having the wavelet coefficients 
as  
x~ {w1, w2,...,wM, xM}                                       (13) 
 
where wm, m=1, 2,..., M are the angular wavelet 
coefficients at various levels. Each wm contains three 
subsets w1

m, w2
m, w3

m corresponding to low-high 
(LH), high-low (HL), and high-high (HH) 
components, and xM contains low-low (LL) 
component at level M. Since x is completely 
determined from its angular wavelet coefficients, we 
can model x by modeling the wavelet coefficients 
independently. 
 
We use parametric model which is an extension of 
AR model, and assume that the angular wavelet 
subbands are independent of each other. Hence, we 
can model each subband separately by using an 
AR model with the nonsymmetrical half plane 
(NSHP) neighborhood system shown in Fig. 3.  
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For example, a first order AR model can be used for 
low-low (LL) subband with 

where ni,j is a zero-mean white Gaussian noise with 
variance σ2 . Similar first-order AR's can be used 
for the remaining angular wavelet subbands.  

 
          First               Second-order                           qth-order 

Figure3. Nonsymmetrical half plane 
(NSHP) neighborhood systems 

AR parameter estimation is done by solving Yule-
Walker equations in each subband, while the model 
synthesis is done by generating an AR realization in 
each subband using equations like (14) and 
obtaining the synthesized texture from the modeled 
angular wavelet subbands. 
 
4. Experimental Results And Discussion 
4.1. The Performance of Angular wavelet frames for 
texture synthesis 
We performed the texture synthesis on several 
'Brodatz' textures of size 128x128. We used 1-D 
'db4' filters to construct the 2-D filters using 
frequency transformation methods. Some results of 
texture synthesis using the second-level decomposition of 
the AWFs are shown in Fig.4. Along with the synthesis 
results, we also present the original prototype texture 
and the correlation plots for the original and synthesized 
textures respectively. We observe that the performance 
of the model using second-level decomposition of AWFs is 
better than that of the first-level decomposition of AWFs 
(Fig.4a). One can use still higher levels of 
decomposition to get better synthesis results, but the 
complexity of the model increases. In this work, we have 
used the second level decomposition of AWF. Generally, 
we have 4 subbands in the decomposition, where I is the 
level of decomposition. For two level decomposition, we 
have 16 subbands. We decompose only those subbands, 
which contain significant information. The subbands to be 
decomposed are chosen by calculating the energy [6] of 
each subband and choosing those subbands with energy 
greater than 90% of the maximum energy contained in a 
subband. Hence if J is the number of subbands to be 
decomposed at second level, we have a total of 3 J+4 
subbands. 
 
4.2. Comparison of the synthesis results using AWFs and 
using DWT 
In this section, we present a comparison between the 
performances of the AR modeling of subbands using the 
AWFs with that of the Rectangular wavelets (DWT) for 
texture synthesis. In DWT, the decomposition is done in 

the low-low region only. If the texture image contains 
more edge information as shown in Fig.4, this will be in 
general present in the high-high region. In case of DWT, 
we cannot extract this information. In order to extract that 
information it is necessary that we decompose the region 
other than the low-low region as in AWF. Obviously, the 
performance of the texture synthesis using AWFs is far 
superior compared to that using DWT for the textures 
having more edge information. Fig.4b shows the synthesis 
results of an image of piecewise constant polygonal 
patches. The DWT is clearly unable to extract the 
edges, whereas the AWF has extracted them well. Fig.4c 
shows the checkerboard image, which is a binary image 
with only two intensity values. It contains non-linear 
correlation. The synthesis results using AWF 
satisfactory. The synthesis using DWT however is 
unstable, because of the abrupt change in the intensity 
level around each square in the image. In Fig.4d, the 
aluminum wire texture dominated by nonlinear 
correlation cannot be extracted by the DWT. However, 
the AWF is able to extract the brightness transitions 
remarkably well. Finally, our aim is to apply the 
proposed model on images that are structured and 
highly inhomogeneous. One such example is a face 
image, shown in Fig.4e. The synthesis using the proposed 
AWF performs satisfactorily. We observe that the images 
synthesized using DWT seems to contain local 
structures, but in a globally disorganized fashion. Fig.4f 
shows the synthesis results of the "herring bone" texture. 
Herringbone texture contains significant information in 
all directions. In order to extract information, it is 
necessary that we decompose all the sub bands at the 
second level decomposition of AWF. The synthesis 
result shown in Fig.   4f is satisfactory, but the 
complexity is high, as we have to model all 16 subbands 
at second level. 

4.3 Performance of AWF for Texture Classification: 
We performed classification experiments for 26 Bradatz 
textures. Images taken are of size 256x256. The sub 
images are obtained by filtering the texture images with 
2D AWF. The variances of filtered images are chosen as 
component of feature vector. A comparison of overall 
classification rates of different methods is shown in  
Table 1. 

5. Conclusions 
In this paper, we propose an angular wavelet frame 
based multiresolution statistical model for texture 
synthesis. The 2D AWF is constructed by applying 
frequency transformations to the prototype filters of a 1D 
perfect reconstruction filter bank (PRFB). The basic 
idea is to construct a complex model from several simpler 
models. Our synthesis results demonstrate that the 
proposed model is superior to DWT method for 
textures dominated by nonlinear correlations. Very 
low order AR model is sufficient to model the 
subbands. This in turn requires a small number of AR 
parameters to represent the complete texture image. This is 
very useful in low bit rate applications. The classification 
results show that AWF is most suitable for textures with 
dominant angular components 
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Table 1: Comparison of Classification Rates 
 (window   size32*32) 

 
Method DWT DWF AWF 

Level 1-4 sub images 91.93% 96.48% 98.14%
Level 2-7 sub images 95.44% 98.83% 100.00% 
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Figure 4. Synthesis results of (a) D76 (b) Polygonal patches (c) Checker board (d) Aluminum wire (e) Face of 
a man (f) Herringbone textures, shown as 

(1) Original texture (2) Synthesized using AWF (3) Synthesized using DWT (4),(5), and 
(6) Correlation plots of textures in (1), (2), and (3) respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 


