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Abstract: Two dimensional principal component
analyses (2DPCA) is recently proposed technique for
face representation and recognition. The standard PCA
works on 1-dimensional vectors which has inherent
problem of dealing with high dimensional vector space
data such as images, whereas 2DPCA directly works on
matrices i.e. in 2DPCA, PCA technique is applied
directly on original image without transforming into 1
dimensional vector. This feature of 2DPCA has
advantage over standard PCA in terms of dealing with
high dimensional vector space data. In this paper a
working principle is proposed for color image
compression using 2DPCA. Several other variants of
2DPCA are also applied and the proposed method
effectively combines several 2DPCA based techniques.
Method is tested on several standard test images and
found that the quality of reconstructed image is better
than standard PCA based image compression. The other
performance measures, such as computational time,
compression ratio are ameliorated. A comparative study
is made for color image compression using 2DPCA.
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1. Introduction

Dimensionality reduction is one of the key techniques in
data analysis, aimed at revealing meaningful structure
and unexpected relationship in multivariate data. It
assembles numerous methods, all striving to present
high-dimensional data in low dimensional space, in a
way that faithfully captures desired structural elements of
the data. Dimensionality reduction is used for many
purposes. For example, it is beneficial as a visualization
tool to present multivariate data in a human accessible
form, as a method of feature extraction, and as a
preliminary transformation applied to the data prior to the
use of other analysis tools like -clustering and
classification.

There are various methods for dimensionality reduction.
Principal component analysis (PCA) also known as
Karhunen- Loeve expansion, is one of the classical
dimensionality reduction methods used for feature
extraction which has been widely used in variety of areas
such as signal processing, pattern recognition, data
mining, computer vision and machine learning.  The
dimensionality reduction problem is directly related to
Image compression. PCA has been widely applied in the
area of image compression in various forms. PCA has
been applied as standalone image compression technique
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as well as pre-processing or post-processing step in
combination with several other techniques such as neural
network, discrete wavelet transform based methods. In all
PCA based methods when applied to images, the 2
dimensional image matrix must be previously
transformed into 1 dimensional image vectors. The
resulting image vectors of image usually lead to a high
dimensional image vector space because generally image
size taken for image compression application is of
128x128, 256x256 and more. The high dimensional
image vector space further creates the problem for
evaluating covariance matrix accurately and resulting
covariance matrix has large size. Furthermore, computing
the eigenvectors of a large size covariance matrix is very
time consuming. Fortunately, the eigenvectors can be
calculated efficiently using the Singular Value
Decomposition (SVD) technique and process of
generating the covariance matrix is actually avoided.
However, this does not imply that the eigenvectors can
be evaluated accurately in this way since eigenvectors are
statistically determined by covariance matrix, no matter
what method adapted for obtaining them [1].

In the area of face recognition, recently a new method,
2-Dimensional Principal Component Analysis (2DPCA)
has been proposed by Jian Yang et. al. [1]. As historical
background, PCA has been applied in several areas and
among others a most successful application is the human
face recognition. Principal component analysis (PCA)
was first efficiently employed by Kirby and Sirovich [2]
,[3] to represent human faces. They showed that any face
image could be reconstructed by approximately as a
weighted sum of small collection of images that define a
facial basis (eigen-images), and a mean image of the
face. Their work immediately led to the PCA
“Eigenface” technique [4] by Turk and Pentland for face
recognition in 1991. Since then, PCA has been widely
investigated and has become one of the most successful
approaches in face recognition [5], [6], [7], [8].

Generally another approach taken in image compression
using PCA, is to divide image in 8x8 blocks and arrange
the block data in vector form. To increase the
compression, if too few eigenvectors of covariance
matrix is selected as basis vectors for subspace
transformation in PCA, it leads to patches in
reconstructed image otherwise if more eigen vectors are
selected as basis vectors for subspace transformation in
PCA , compression will not be sufficient. Also with 8§x 8
blocks, the covariance matrix has the size 64 x 64, which
is still large to calculate and time consuming. Another
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problem is that image data are not properly correlated in
terms of 64 dimensions for 8x8 blocks cut across full
image. To overcome the problem of large covariance
matrix in PCA, 2DPCA directly computes the
eigenvectors of the so-called image covariance matrix
without matrix—to-vector conversion. As a result, 2DPCA
has two important advantages over PCA. First, it is easier
to evaluate the covariance matrix accurately. Second,
computation of corresponding eigenvectors is more
efficient and less time is required to determine the
corresponding eigenvectors than PCA.

In this paper, a working principle is proposed for color
image compression using 2DPCA. The paper is
organized as follows: In section 2, the basic idea of
2DPCA and their variants are reviewed. In section 3,
proposed working principle for color image compression
is described. In section 4, results are presented. Section 5,
contains the conclusion and discussion on topic.

2. Brief reviews of 2DPCA and variants
2.1 2DPCA

Let X denotes an n-dimensional unitary column vector
called as projection vector. A is mxn random image
matrix which is transformed into Y using X by following
linear transformation:
Y =AX

(M

Therefore to obtain an m-dimensional projected vector Y,
which is called the projected feature vector of image A,
the total scatter of the projected samples J(X) is used.

J(X)=tr(Sx) @
Where Sy is covariance matrix of projected feature
vectors and tr(S,) is trace of Sy. By maximizing (2),

projection direction Xcan evaluated on which all
samples are projected, thus the total scatter of the
resulting projected samples is maximized. Now,

J(X)=tr(Sy)= tr {E[(Y —EY)Y —-EY)T]}
tr{ E[(AX — E(AX))(AX—E(AX))"] ©)
= tr{XTE[(A-EA)T(A-EA)IX} T

Therefore, define image covariance (scatter) matrix:
G=E[(A-EA)"(A-EA)] ()

This turns out to be a nonnegative definite matrix of size
n x n. The average image D, for available L number of

images A,,(k=12,...... L)each of size m x n is,
Therefore, p = 1 ZL: Ay (%)
k=1
L
Then G =%Z[(Ak “D)T(A, -D)] (6)

k=1
It has been shown [1] that the optimal value for the
projection axis X, i.e. called optimal projection axis
X, is the eigenvector of the G, corresponding to the

largest eigenvalues. The set of projection axes
X, X,....X, are the eigenvectors corresponding the d

opt?

largest eigenvalues of G . These X;,i=12,...d are

489

further used to extract the projected feature vectors
Yii=12,.... d of m dimension for an image A, .

Y =A X, k=1.2,...... Land i=12,...d @)
Thus feature matrix for an image A, , is formed as
F:[YlﬁYZS"'Yi""Yd]mxd (8)

The reduced size of feature matrix for an image is the key
to image compression. The reconstructed image from its
feature matrix can be formed as,

Ak =0Y Y Y Y g Tod DX X g Xg T axn (9)

2.2 Variants of 2DPCA
2.2.1 Alternative 2DPCA
It has been shown [9] that 2DPCA is effectively working

in the row direction of image as if image matrix A,
A =[ADTAG) (An) "1, is arranged using
row vectors A, ie. A, is j™ row of image A,.
Similarly average image D=[(Dy;)"(Dys) e (D) " 1"
is arranged where D, is ™ row of average image. Then
image covariance matrix (n x n) in the row direction is,

1 L m
G, :tzz(Akj _ij)T(Akj -Dy) (10)

k=1 j=1

The (10) is further extended in column direction and
alternative G, (m x m) is described [9] as:

1 L n
o= XY (Ag-DiglAg D) 11)
k=1j=1
of size. Image matrix A, =[A,; Ao Ay, 1" where

Ay 1s j™ column of image A, and similarly average

of average image. Apart from description given in [9], (8)
can be derived by interchanging rows and columns of
image A, and proceeding same way as in section 2.1. In

this case z .p=12,...q are the q eigen vectors of (m

dimensional) column direction image covariance matrix
G, corresponding the q largest eigenvalues of G.. The

projected feature matrix F, = zT A, is of dimension q x n.
2.2.2 2-Directional 2-Dimensional PCA (2D)? PCA

2DPCA and alternative 2DPCA only works in the row
and column direction of images respectively. That is,
2DPCA learns an optimal matrix X from a set of

training images reflecting information between rows of
images, and then projects an m x n image A, onto X ,

yielding an m x d row feature matrix F, =A, X.

Similarly, the alternative 2DPCA learns optimal matrix
Z reflecting information between columns of images,

and then projects A, ontoZ , yielding a q X n matrix

column feature matrix Fgy = ZTA, [9]. A way to
simultaneously use the projection matrices X and Z is

described as F,y =ZTA X of size q x d. The matrix
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Fre is also called the coefficient or row-column feature
matrix in image representation, which can be used to

reconstruct the original image A, , using Ac =ZE X".

2.2.3 Diagonal Principal Component Analysis (DiaPCA)

In 2DPCA, the projective vectors only reflect variations
between either rows or columns of image which implies
all the essential information contained may not be
covered [10]. To overcome this, another variant of
2DPCA, known as DiaPCA is recently proposed [10]
which extract the diagonal image from image. If number
of rows of an image is less than number of column then
strategy in figure (1.a) is used for forming diagonal
image from an image and backward. If number of
column of an image is less than number of rows then
strategy in figure (1.b) is used for forming diagonal
image from an image and backward.

RE"tfdhbn Diagonal Image ,
1]z[a[4 DEEDEBERBO T]2]a3]4
BERERE w56 |7|8fE|E|7 68— 6 (7|85
3 [10]11]12 o [0 [i1[12] e |67 2] 11]12|a |10
Image , = =
row =3 < column = 4 Right shift Left addition
1]z][3 ][4 AR REED
s(e|7]ale«—dBI7 |5 [El6[7[8]5
g [0 [11]12 HEE L OEEE
Recovered | —
arectimage Ceft shift
1(a)
Diagonal Image ,
Tz ][3 NEE = L
BN 4 s [T T8 il B
AERE o[ 678 g A A E S
g = g 2|5
9 |10 |11 g[e [0} e
Image , 81 213 sT2l5
row =4 > column = 3 %4 4 5E s e i
TT3 7338718 =S EA R
I ES e R R R A B |10 3 |5
6 |7 |8 | NN
9 10 [ 11
Recovered Image
1(b)
Figure 1: Constructing diagonal image using
DiaPCA

3. Working principle of 2DPCA based color
image compression

The block diagram corresponding to the proposed
working method is shown in figure (2). First, color image
is converted into YCbCr (one luminance Y and two
chrominance Cb, Cr) format from RGB image knowing
the fact that in YCbCr format, 3 components Y, Cb and
Cr are mutually less correlated than in compare to three
components R, G and B in RGB format. The resulting
each component in matrix form, termed as frame, dealt
separately. Each frame is further divided into sub-frames
in raster scan to generate set of training images. Apart
from blocking in standard PCA, here sub-frames are of
larger size and hence capture the more variations of
image scenes. Further, for each sub-frame, diagonal sub-
frame figure (1) is calculated using DiaPCA. Using
diagonal sub-frames for a frame, frame covariance matrix
is calculated by applying both row variation (2DPCA)
and column variation (Alternative 2DPCA). The
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corresponding row projection matrix X and column
projection matrix Z is evaluated and combined using
(2D)*PCA  which results a feature matrix F,y for every
diagonal sub-frame Ay for a frame. To reconstruct the

image, feature matrix F is first converted back to Ak
(inverse diagonal sub-frame) and then use the procedure
in figure (1) to reconstruct the sub-frame. The
reconstructed sub-frames are arranged in raster scan to
reconstruct the frame and combination of 3 reconstructed
frames represents the reconstructed image in YCbCr
format. When YCbCr format reconstructed image is
converted back to RGB format, the reconstructed image
is recovered.

R Image '—I YCBCr Insage
L

slew| passanwar

- Frame
0 ([iaPEA)

Feanre MBx Foy
2DYPCA

——Decoding——

Figure 2: Block Diagram of color image
compression using 2DPCA

The expression for calculating compression ration is used
as:

_*
Lu+6+¢

Where, o = size of frame of an image (i.e. m x n)
B = size of feature matrix Frck (i.e. gxd)

p =no. of sub-frames in a frame (i.e. L)

0 = size of row projection matrix X (i.e. nx d)

¢ = size of column projection matrix Z (i.e. mxq)

Here every element of matrix F takes on average 8 bits.
If Fr is further to be used with any other algorithm of
compression, it can be assumed that every element of F
matrix takes on average 16 bits and bits per element can
be decided at end stage of combined method.

4, Results

The working methodology is tested on standard test
images, i.e., lena and mandril. Obtained results are shown
in table 1,2, and 3. Overall three variations are carried
out. First, by varying the number of sub-frames in frames
of given image. Second, by varying number of
eigenvectors for both G, and G, i.e., X and Z (same
number of eigenvectors for both) in frame of a given size
as in first variation. Third variation is done by varying
the image size and repeating first and second variation.
The compression ratio is calculated by assuming every
element of resulting feature matrices take on average 8
bits for digital representation. Compression ratio shown
in table 1 and 2 are less than the compression ratio shown
in table 3. The quality of reconstructed image is good
when more number of eigenvectors is considered but in
that case compression ratio reduces.
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Table 1: 2D PCA (Row- Wise)

Table 2; Altemative 20 PCA (2DPCA

(a)
B |C: f;j:s PSNR | EMSE | CR
s 4| 6 [20006]206363] 10082
14| 8 [235ms]17.010] 7800
s[4 1w [oarms|uasmr] ems
66| 6 |20104]16000] 70287
6| 6| 8 |25643|134123] 5276
66| 10 |263m0]115ms] 411
5| 5| 6 |250m4]144m6] 5258
5|5 | 8 |26980]114%7] 3038
5| 5| 10 | 23697 93010 | 3158
)
1[4 6 |15.649]293105] 10082
1[4 8 |18 277m3] 1800
s 4| 10 [100m7]2550m0] 6023
6| 6| © |196206]26630] 7.0087
66| s |19563]263us] 5276
66| 10 |204sm3|240m] 4
5| 8| 6 |203050]243067] 5253
55| s |214s8)214m4] 3038
5|5 | 10 |26u7]158m5] 3158
©
6]6] s [253m5]13909] 104101
66| 10 |265m7| 02| sum
6| 6| 12 |27.5w0] 10703] 6946
55| s |25 121208] 7.97@
5| 5| 10 |2700m0]100ms] 63018
5|8 | 12 |290641] 9.04% | 558
1010 5 | 25.0816] 10180 6.3615
10|10 10 |wsm|son | sue
10 (10| 12 | 30686 7520 | 42410
(d)
6]6] s |20695]233009] 104191
6| 6| 10 | 20210 |223436] 5.8
66| 12 |217mm]210m3] 6sia
55| s |22 22147 197@
5 | 5| 10 | 21990 204216 6.3018
55| 12 |26w8] 190404] 5258
10|10 5 |200m4]20432] 6365
10 10| 10 | 207486 | 157477 | s.0a%2
1010 12 |234m]|17363] 4240
Table 3 (2D)* PCA (Both Row & Calumn-
Wise)
(a)
Re|co| B ) psyp | RABE | cR
T 2] 6 [214915]218003] 45.7009
AR EE
2| 1w [2114m15983] 2276
5| 6| 6 |23.3m817.454 35,4089
6| 6] 8 |248860]14.6000] 22005
5| 6| 10 | 2608 12601 147604
58| 6 |244008]155m ] 24380
5| 8| s |26s| g | om
58| w0 [27.1m9 10405 930m
®
1[4 6 [1msp7[seni] s
AREREEEEEIEE
44| 1w [15.605| w8150 20786
5| 6| 6 |15.3194]300447] 35,4089
6| 6] 8 |[15.9257) 25889 20008
5| 6| 10 | 19451527123 147004
58] 6 [15.5807] 29.0007] 24380
5| 8| s | 10.9ss|26mss| 14m
5| 8| 10 |20%3] 24639 | 93091
©
6] 6] 8 [24643]15108] TLE
5| 6| 10 |257ms|13.2451 | 494611
6| 6] 12 |26706] 11859 36.28
5| 8| & |25828 1317 52000
58| 10 |27.100]11308] 3133
5| 8| 12 | 25133 10087 | 243800
[0 s [271m0| 11080 363m
10 10| 10 | 254847 96617 | 237880
[0 1 [wsw7] s | 16788
[
6] 6] 8 [193m]275B1] TL88
6| 6| 10 | 19.09m | 26667 | 494611
6| 6] 12 |199%07]25706] 36.289
5| 8| & |19.630] 26.7m38 | 512000
58| w0 |00 34133
58| 12 |204ms 243510
w0 s |28 36,3081
0|10 w | 20529 23,7530
w0 1 |20 16,783

column wis g}

(a)
Re|cs| FEm | pom | RASE | R
14| 6 | 248866 14585 | 10.002
14| 5 [262083] 12501 7.50m
4| 4| 10 [273m6] 10983 | 6023
6| 6| 6 |264m6] 121259 70287
6| 6| s |28185 100m7] 5276
6| 6| 10 |204m| 55666 | 4217
5| 5| 6 |251160 10.0252| 52513
5| s| s |20827] 52035 | 393
5| 5| 10 [314363] 68 | 315

®
4[4[ 6 [1s7m1] 20586 [ 10.002
4| 4| 5 [1940ms] 27300 7.52m
1| 4| 10 |19ems| 25705 602
6| 6| 6 |195643]265u8| 70287
6| 6| 5 |202m0]246m2| 5276
6| 6| 10 |208m1] 230m5| 47
5| 85| 6 |202m1)24am00 5513
5| 5| 5 |21009] 22564 3938
5 | s | 10 | 21s0s6| 20742 | 31808

]
6] 6] 5 |27615] 10.6W4] 10.4191
6| 6| 10 |257m3 o3 | sas
6| 6| 12 |207ms| 5314 | el
5|5| 5 |290%8 s0®m | 757®
5 | 5| 10 |a303m00] 783 | 630
5| 5| 12 |31sm3| ema | 52513
W10 s |30303] 7507 | 6368
1010 10 | 31708 s6ids | 508
1010 12 |330ms] 5606 | 4240

(dy
6] 6] s |202710] 24.9500] 104191
6| 6| 10 |205m5 2390 5.338
6| 6| 12 | 20890 231014 6948
5| 5| s |20s06) 2418 7578
5| 5| 10 | 2007 23007 | 63018
5|5 | 12 |2137] 219473 | 5513
1010 s | 21088 22601 63615
w10 10 |215m3] 214880 508
010 12 | 21971 20382 | 4240

Details of symbols used in tables:

256 x 256 Lana colos imags
56 x 256 Mandril color imags.
x 512 Leana color image.
12 x 512 mandril color imags.

If imagz size sm xnx 3 then image frams wad
for sinmlation has size
By=rows in frame is floor (m /Rs)

E_ = cohmns in freme s floor (m/ Cs)

Floor(x) rounds the = to the nearsst lower
intagar.

Bs is no. of rows division in By for sub-frame
formation.
Cs is no. of colunm division in R, for sub-frame
formation.

Eigen Vactors arathe no. of Eigen vactors takan
from corresponding covarimce matrix
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5. Conclusion

The results obtained by using the proposed working
method for color image compression are found
impressive on account of both compression ratio and
quality of reconstructed image. This methodology can be
further applied with other compression algorithm to
increase the compression ratio. The potential of 2DPCA
based techniques is such that they can be used in matrix
form which has profound effect on image applications,
video applications. The proposed working plan fully
explores and utilizes 2DPCA based techniques.
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