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Abstract: Two dimensional principal component 
analyses (2DPCA) is recently proposed technique for 
face representation and recognition. The standard PCA 
works on 1-dimensional vectors which has inherent 
problem of dealing with high dimensional vector space 
data such as images, whereas 2DPCA directly works on 
matrices i.e. in 2DPCA, PCA technique is applied 
directly on original image without transforming into 1 
dimensional vector. This feature of 2DPCA has 
advantage over standard PCA in terms of dealing with 
high dimensional vector space data. In this paper a 
working principle is proposed for color image 
compression using 2DPCA. Several other variants of 
2DPCA are also applied and the proposed method 
effectively combines several 2DPCA based techniques. 
Method is tested on several standard test images and 
found that the quality of reconstructed image is better 
than standard PCA based image compression. The other 
performance measures, such as computational time, 
compression ratio are ameliorated. A comparative study 
is made for color image compression using 2DPCA.   
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1. Introduction 
Dimensionality reduction is one of the key techniques in 
data analysis, aimed at revealing meaningful structure 
and unexpected relationship in multivariate data. It 
assembles numerous methods, all striving to present 
high-dimensional data in low dimensional space, in a 
way that faithfully captures desired structural elements of 
the data. Dimensionality reduction is used for many 
purposes. For example, it is beneficial as a visualization 
tool to present multivariate data in a human accessible 
form, as a method of feature extraction, and as a 
preliminary transformation applied to the data prior to the 
use of other analysis tools like clustering and 
classification.  

There are various methods for dimensionality reduction. 
Principal component analysis (PCA) also known as 
Karhunen- Loeve expansion, is one of the classical 
dimensionality reduction methods used for feature 
extraction which has been widely used in variety of areas 
such as signal processing, pattern recognition, data 
mining, computer vision and machine learning.   The 
dimensionality reduction problem is directly related to 
Image compression. PCA has been widely applied in the 
area of image compression in various forms. PCA has 
been applied as standalone image compression technique 

as well as pre-processing or post-processing step in 
combination with several other techniques such as neural 
network, discrete wavelet transform based methods. In all 
PCA based methods when applied to images, the 2 
dimensional image matrix must be previously 
transformed into 1 dimensional image vectors. The 
resulting image vectors of image usually lead to a high 
dimensional image vector space because generally image 
size taken for image compression application is of 

128128× , 256256×  and more. The high dimensional 
image vector space further creates the problem for 
evaluating covariance matrix accurately and resulting 
covariance matrix has large size. Furthermore, computing 
the eigenvectors of a large size covariance matrix is very 
time consuming. Fortunately, the eigenvectors can be 
calculated efficiently using the Singular Value 
Decomposition (SVD) technique and process of 
generating the covariance matrix is actually avoided. 
However, this does not imply that the eigenvectors can 
be evaluated accurately in this way since eigenvectors are 
statistically determined by covariance matrix, no matter 
what method adapted for obtaining them [1]. 

In the area of face recognition, recently a new method,  
2-Dimensional Principal Component Analysis (2DPCA) 
has been proposed by Jian Yang et. al. [1]. As historical 
background, PCA has been applied in several areas and 
among others a most successful application is the human 
face recognition. Principal component analysis (PCA) 
was first efficiently employed by Kirby and Sirovich [2] 
,[3] to represent human faces. They showed that any face 
image could be reconstructed by approximately as a 
weighted sum of small collection of images that define a 
facial basis (eigen-images), and a mean image of the 
face. Their work immediately led to the PCA 
“Eigenface” technique [4] by Turk and Pentland for face 
recognition in 1991. Since then, PCA has been widely 
investigated and has become one of the most successful 
approaches in face recognition [5], [6], [7], [8].  

Generally another approach taken in image compression 
using PCA, is to divide image in 88×  blocks and arrange 
the block data in vector form. To increase the 
compression, if too few eigenvectors of covariance 
matrix is selected as basis vectors for subspace 
transformation in PCA, it leads to patches in 
reconstructed image otherwise if more eigen vectors are 
selected as basis vectors for subspace transformation in 
PCA , compression will not be sufficient. Also with 88×  
blocks, the covariance matrix has the size 6464× , which 
is still large to calculate and time consuming. Another 
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problem is that image data are not properly correlated in 
terms of 64 dimensions for 88×  blocks cut across full 
image. To overcome the problem of large covariance 
matrix in PCA, 2DPCA directly computes the 
eigenvectors of the so-called image covariance matrix 
without matrix–to-vector conversion. As a result, 2DPCA 
has two important advantages over PCA. First, it is easier 
to evaluate the covariance matrix accurately. Second, 
computation of corresponding eigenvectors is more 
efficient and less time is required to determine the 
corresponding eigenvectors than PCA. 

In this paper, a working principle is proposed for color 
image compression using 2DPCA. The paper is 
organized as follows: In section 2, the basic idea of 
2DPCA and their variants are reviewed. In section 3, 
proposed working principle for color image compression 
is described. In section 4, results are presented. Section 5, 
contains the conclusion and discussion on topic.  

2. Brief reviews of 2DPCA and variants  

2.1 2DPCA 

Let X denotes an n-dimensional unitary column vector 
called as projection vector. A  is nm×  random image 
matrix which is transformed into Y using X by following 
linear transformation:  

 AX Y =                                                                             (1) 

Therefore to obtain an m-dimensional projected vector Y , 
which is called the projected feature vector of image A, 
the total scatter of the projected samples )(J X  is used.     

)(tr )J( XSX =                                                                (2)                                                                               
Where XS  is covariance matrix of projected feature 
vectors and )(tr xS  is trace of XS . By maximizing (2), 
projection direction X can evaluated on which all 
samples are projected, thus the total scatter of the 
resulting projected samples is maximized. Now, 
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Therefore, define image covariance (scatter) matrix:   
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This turns out to be a nonnegative definite matrix of size           
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It has been shown [1] that the optimal value for the 
projection axis X , i.e. called optimal projection axis 

optX , is the eigenvector of the G , corresponding to the 
largest eigenvalues. The set of projection axes 

dXXX ......., 21  are the eigenvectors corresponding the d 
largest eigenvalues of G . These diXi ,......2,1, =  are 

further used to extract the projected feature vectors 
diYi ,........2,1. = of m dimension for an image kA .  

iki XAY = , Lk ,.........2,1=  and di ,......2,1=                 (7) 
Thus feature matrix for an image kA , is formed as  

dmdi YYYYF ×= ]....,...,[ 21                                       (8) 
The reduced size of feature matrix for an image is the key 
to image compression. The reconstructed image from its 
feature matrix can be formed as,  

nd
T

ddmdik XXXYYYYA ××= ],......,[].........,[ 2121        (9)   

2.2 Variants of 2DPCA 

2.2.1 Alternative 2DPCA  

It has been shown [9] that 2DPCA is effectively working 
in the row direction of image as if image matrix kA , 
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row vectors kjA  i.e. kjA  is jth row of image kA . 

Similarly average image TT
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is arranged where  kjD  is jth row of average image. Then 
image covariance matrix (n x n) in the row direction is, 

∑∑
= =

−−=
L

k

m

j
kjkj

T
kjkjr DADA

L
G

1 1
)()(1                                (10)  

The (10) is further extended in column direction and 
alternative cG ( m x m ) is described [9] as: 
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of size. Image matrix T
knkkk A AAA ]..........[ 21= where 

kjA  is jth column of image kA  and similarly average 

image T
knkkk DDDD ].....,[ ,21=  where kjD is jth column 

of average image. Apart from description given in [9], (8) 
can be derived by interchanging rows and columns of 
image kA  and proceeding same way as in section 2.1. In 
this case qpZp ,.......2,1, =  are the q eigen vectors of (m 
dimensional) column direction image covariance matrix 

cG  corresponding the q largest eigenvalues of cG . The 
projected feature matrix k

T
c AZF = is of dimension q x n.  

2.2.2   2-Directional 2-Dimensional PCA (2D)2 PCA 

2DPCA and alternative 2DPCA only works in the row 
and column direction of images respectively. That is, 
2DPCA learns an optimal matrix X from a set of 
training images reflecting information between rows of 
images, and then projects an m x n image kA  onto X , 

yielding an m x d row feature matrix XAF krk = . 
Similarly, the alternative 2DPCA learns optimal matrix 
Z  reflecting information between columns of images, 

and then projects kA  onto Z , yielding a q x n matrix 

column feature matrix k
T

ck AZF =  [9] .  A way to 
simultaneously use the projection matrices X and Z is 

described as XAZF k
T

rck =  of size q x d. The matrix 
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rckF is also called the coefficient or row-column feature 
matrix in image representation, which can be used to 
reconstruct the original image kA , using T

rckk XZFA = . 

2.2.3 Diagonal Principal Component Analysis (DiaPCA) 

In 2DPCA, the projective vectors only reflect variations 
between either rows or columns of image which implies 
all the essential information contained may not be 
covered [10]. To overcome this, another variant of 
2DPCA, known as DiaPCA is recently proposed [10] 
which extract the diagonal image from image. If number 
of rows of an image is less than number of column then 
strategy in figure (1.a) is used for forming diagonal 
image from an image and backward. If number of 
column of an image is less than number of rows then 
strategy in figure (1.b) is used for forming diagonal 
image from an image and backward.  

 
                                     1(a)  

 
                                        1(b) 

Figure 1: Constructing diagonal image using 
DiaPCA 

3. Working principle of 2DPCA based color 
image compression 

The block diagram corresponding to the proposed 
working method is shown in figure (2). First, color image 
is converted into YCbCr (one luminance Y and two 
chrominance Cb, Cr) format from RGB image knowing 
the fact that in YCbCr format, 3 components Y, Cb  and 
Cr are mutually less correlated than in compare to three 
components R, G and B in RGB format. The resulting 
each component in matrix form, termed as frame, dealt 
separately. Each frame is further divided into sub-frames 
in raster scan to generate set of training images. Apart 
from blocking in standard PCA, here sub-frames are of 
larger size and hence capture the more variations of 
image scenes. Further, for each sub-frame, diagonal sub-
frame figure (1) is calculated using DiaPCA. Using 
diagonal sub-frames for a frame, frame covariance matrix 
is calculated by applying both row variation (2DPCA) 
and column variation (Alternative 2DPCA). The 

corresponding row projection matrix X and column 
projection matrix Z is evaluated and combined using 
(2D)2PCA  which results a feature matrix Frck for every 
diagonal sub-frame Ak for a frame. To reconstruct the 

image, feature matrix Frck is first converted back to kA  
(inverse diagonal sub-frame) and then use the procedure 
in figure (1) to reconstruct the sub-frame. The 
reconstructed sub-frames are arranged in raster scan to 
reconstruct the frame and combination of 3 reconstructed 
frames represents the reconstructed image in YCbCr 
format. When YCbCr format reconstructed image is 
converted back to RGB format, the reconstructed image 
is recovered.  

 
 Figure 2: Block Diagram of color image 

compression using 2DPCA 

The expression for calculating compression ration is used 
as:  

 
.

   CR
φθμβ

α
++

=
 

Where, α = size of frame of an image (i.e.  m x n) 
β = size of feature matrix Frck  (i.e.  q x d ) 
μ  = no. of sub-frames in a frame (i.e.  L ) 
θ = size of row projection matrix X (i.e.  n x d )  
φ = size of column projection matrix Z (i.e.  m xq )  

Here every element of matrix Frck takes on average 8 bits. 
If Frck is further to be used with any other algorithm of 
compression, it can be assumed that every element of Frck 
matrix takes on average 16 bits and bits per element can 
be decided at end stage of combined method. 

4. Results  

The working methodology is tested on standard test 
images, i.e., lena and mandril. Obtained results are shown 
in table 1,2, and 3.  Overall three variations are carried 
out. First, by varying the number of sub-frames in frames  
of given image. Second, by varying number of 
eigenvectors for both Gr  and  Gc i.e., X and Z (same 
number of eigenvectors for both) in frame of a given size 
as in first variation. Third variation is done by varying 
the image size and repeating first and second variation. 
The compression ratio is calculated by assuming every 
element of resulting feature matrices take on average 8 
bits for digital representation. Compression ratio shown 
in table 1 and 2 are less than the compression ratio shown 
in table 3. The quality of reconstructed image is good 
when more number of eigenvectors is considered but in 
that case compression ratio reduces.   
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5. Conclusion   

The results obtained by using the proposed working 
method for color image compression are found 
impressive on account of both compression ratio and 
quality of reconstructed image. This methodology can be 
further applied with other compression algorithm to 
increase the compression ratio. The potential of 2DPCA 
based techniques is such that they can be used in matrix 
form which has profound effect on image applications, 
video applications. The proposed working plan fully 
explores and utilizes 2DPCA based techniques. 
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